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Abstract—Data-intensive wireless sensor network applications,
such as structural health monitoring and earthquake monitoring,
require high throughput bulk data collection. Based on the fact
that each node stores the same amount of sensor data, we
propose a Maximum-Subtree-First Collection Protocol (MSFCP),
which adopts Maximum-Subtree-First scheduling on top of multi-
channel block transfer to maximize overall throughput. We
present the theoretical analysis that MSFCP can achieve optimal
throughput in the ideal propagation environment, and we achieve
overall throughput of 135 kbps on the IRIS Mote platform.

Index Terms—Wireless sensor networks, bulk transfer, multi-
channel, scheduling

I. INTRODUCTION

Wireless sensor networks are increasingly used in data-
intensive applications such as structural health monitoring[1],
[2], earthquake monitoring[3], and volcano monitoring[4].
These applications require bulk transfer of large amounts of
sensed data to a common sink, typically over a tree-based
routing topology. For this class of applications, it is critical to
maximize throughput.

The nature of wireless communications brings several chal-
lenges for efficient and reliable collection in multi-hop set-
tings; these include inter-path and intra-path interference [5].
Inter-path interference occurs between multiple flows, while
intra-path interference occurs between multiple hops of the
same flow, where a flow is defined as a set of nodes between
the sink and a source that is actively transmitting packets to
the sink.

Existing bulk transfer protocols such as Flush [6] and
PIP [7] consider only one active flow at a time to eliminate
the issue of inter-path interference. A typical sensor node is
equipped with a single half-duplex transceiver, which can ei-
ther transmit or receive only one packet at any time. Therefore,
in Flush and PIP, the sink is idle over half the time since
the child of the sink can be continuously active by either
transmitting or receiving, whereas the sink only receives, as
shown in Fig. 1.

We propose here the Maximum-Subtree First Collection
Protocol (MSFCP), which collects data from multiple flows
to maximize the overall throughput. MSFCP utilizes multiple
channels to eliminate intra-path interference. This protocol
also uses CSMA-based block transfer to mitigate overhead
including channel switching and ACKs and adopts Maximum-
Subtree-First (MSF) scheduling to reduce inter-path interfer-
ence and utilize the sink capability.

We present a theoretical analysis in which MSF scheduling
achieves the optimal throughput under an ideal communica-
tion environment, and we describe our evaluation of overall
throughput on various routing trees using the IRIS Mote
platform. In our laboratory experiments, achieved throughput
is up to 135 kbps.

The rest of this paper is organized as follows. In section II,
we discuss prior work on data collection. In section III, we
describe the design of MSFCP. Section IV presents an analysis
of collection time under an ideal communication environment.
Section V discusses the experimental evaluation on the IRIS
Mote platform. Finally, in section VI, we conclude the paper
and discuss our future work.

II. RELATED WORK

Traffic patterns of data collection in wireless sensor net-
works are mainly classified into two types, as indicated in
TABLE I: low-power data collection and high-throughput bulk
data collection. Applications such as environmental monitor-
ing, habitat monitoring, and data center monitoring period-
ically collect data at a low data-rate over a long period.
To save energy and improve the network lifetime, sensor
data are typically aggregated to eliminate redundancy and to
minimize the number of transmissions [8]. In contrast, our
target applications such as structural health monitoring and
volcano monitoring attempt to acquire a large amount of data
at a high data-rate, typically over 100 Hz. For signal analysis
or other purposes, these applications collect complete data
from nodes without aggregation. Because it is not feasible to
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Collection from only one flow at
a time

Collection from multiple flows at
the same time

Fig. 1. Data collection from one flow/multiple flows

TABLE I
COLLECTION PROTOCOLS IN WIRELESS SENSOR NETWORKS

Traffic pattern Applications Protocols
Low-power data collection Environmental monitoring CTP [9]

Wildlife monitoring BCP [10]
Data center monitoring

High-throughput bulk data Structural health monitoring Fetch [4]
collection Earthquake monitoring Flush [6]

Volcano monitoring PIP [7]
SSMH [2]

collect such a huge amount of data in real time, nodes store
sensor data in flash memory while sensing and then deliver
the data to a common sink.

Several protocols exist for low-power data collection, for
example, Collection Tree Protocol (CTP) [9] and Backpres-
sure Collection Protocol (BCP) [10]. CTP is widely used in
wireless sensor networks, and is a routing approach where
a minimum cost tree with respect to Expected Transmission
Count (ETX) [11] is dynamically constructed based on a link
quality estimation. BCP is an integrated routing and scheduling
approach based on backlogged queue information.

These periodical data collection protocols are designed for
long term collection and mainly focus on handling topolog-
ical changes to maintain appropriate routes. These protocols
were developed for relatively low traffic rates, and achievable
throughput is limited to a little more than 10 kbps[12].

Several other protocols exist for high-throughput bulk data
collection, including Fetch [4], Flush [6], and PIP [7]. Fetch
was the first bulk transfer protocol in wireless sensor networks;
it achieves a throughput of only 1 kbps because of intra-path
and inter-path interference. Flush [6] and PIP [7] mitigate these
interferences. Flush reduces intra-path interference by the end-
to-end rate control and achieves a throughput of about 10 kbps.
PIP uses multiple channels statically assigned by hop count to
reduce intra-path interference and achieves a throughput of
about 60 kbps.

Flush and PIP collect data sequentially from nodes, i.e.,
only one flow at a time, to eliminate inter-path interference.
These sequentially collecting protocols achieve only half the
maximum throughput because the sink becomes idle when its
active child node is receiving.

In our previous study, we proposed a single-sink multi-hop
communication protocol called SSMH, which employs link-
by-link block data transfer using multiple RF channels for
collecting large amounts of data [2]. SSMH adopts a sender-

Fig. 2. Block transfer

Fig. 3. Channel allocation and transmission scheduling

initiated greedy scheduling strategy and does not ensure max-
imum achievable throughput. Unlike SSMH, MSFCP adopts
a receiver-initiated scheduling strategy to achieve close to
the optimal throughput for an arbitrary topology. Note that
every node stores the same amount of data in our target
applications, and MSFCP takes advantage of this application-
specific characteristic.

III. PROTOCOL DESIGN

We present a design of Maximum-Subtree-First Collection
Protocol (MSFCP) here. MSFCP uses multi-channel block
transfer and adopts Maximum-Subtree-First (MSF) scheduling
to reduce interference and enhance overall throughput.

A. Channel Assignment

IEEE standard 802.15.4 specifies 16 different non-
overlapping channels in the 2.4-GHz ISM band. If we utilize
available multiple channels effectively, we can exploit parallel
transmission to enhance throughput. For high throughput, it is
essential to assign channels to links to minimize interference.

There are two ways to assign multiple channels: dynamic
channel assignment and static channel assignment. Although
dynamic channel assignment schemes can reduce interference
to some degree, frequent negotiations result in large overhead.
In contrast, static channel assignment schemes work with less
overhead, but they are not suitable for rapidly changeable
propagation environment [13].

In practical deployment, interference occurs between nodes
within a few hops [6], [7], and hence, we assign a com-
munication channel statically based on the hop count to
eliminate intra-path interference. This hop count based channel
assignment enables not only packet pipelining as in PIP, but
also reduces inter-path interference to some extent because it
occurs within nodes at the same hop count. Thus, to avoid
inter-path interference, multiple nodes at the same hop count
should not send data at the same time.
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B. Block Transfer

We use a block transfer where a sender transfers a block
of multiple packets. This block transfer technique mitigates
overhead such as channel switching and control packets in-
cluding ACKs. Although transferring a block requires more
memory than transmitting a packet, it reduces the uncertain
time delay, and the transmission delay over each link becomes
almost equal.

The sequence of the block transfer is shown in Fig. 2. (1)The
receiver initiates the block transfer by sending SYN packets
to the sender repeatedly until receiving a data packet from the
sender. (2) After receiving a SYN packet, the sender starts
to send multiple data packets (a block) without performing
clear channel assessment (CCA) or random backoff. This
mechanism shortens the uncertain transmission delay. (3) After
receiving the last packet in a block, if there are any missing
packets, the receiver transmits a Selective Negative ACK
(SNACK) that indicates which packet to retransmit. When the
last packet in a block is lost, the receiver uses a timer to
send a SNACK packet. The sender that receives a SNACK
packet transmits packets from the block that are missing at
the receiver. If the receiver has received all packets correctly,
it transmits a FIN packet to complete the block transfer.

C. Maximum-Subtree-First Scheduling

MSFCP adopts MSF scheduling, which is unsynchronized
distributed scheduling based on its own transmission buffer
information.

Each node stores the same amount of data in our target
application. Because of this, and also due to the characteristics
of block transfer, we can reduce interference and enhance the
overall throughput by using a simple strategy.

We describe in the following the MSF scheduling algorithm,
which is run locally by each node. The key idea is to schedule
transmission in parallel along multiple branches of the tree,
and to keep the sink as busy receiving as possible. We assume
that all the nodes are aware of the number of nodes in each
subtree. This can be easily obtained by gathering the routing
information. The subtree of a node is defined as a tree that
has the child of the node as its root, as shown in Fig. 4.

1) All source nodes wait for their parent’s send request if
their buffer is full.

2) All nodes choose the subtree with the largest number of
total remaining blocks, i.e., maximum subtree, and they
request the subtree root to send data if their buffer is
empty.

The sink always follows rule 2 (the sink’s buffer is treated
as always empty). The sink chooses subtrees whose roots have
a full buffer, that is, subtrees other than the subtree whose root
previously sent a block to the sink. This strategy can keep the
sink as busy as possible and enhance the overall throughput.

In addition, this MSF scheduling ideally realizes one flow
at each hop at a time. If only node N1 is transmitting at hop
h, only N1 is receiving at the next hop h+1 after completing
the transmission.

Fig. 4. Subtrees

Fig. 5. Slotted behavior of nodes with duration Tlink .

IV. MATHEMATICAL ANALYSIS OF COLLECTION TIME

A. Lower Bound on Collection Time

In this section, we consider a lower bound on the collection
time for a given topology. For simplicity, overhead including
channel switching is ignored, all packets can be received,
and topology is fixed during the collection. We assume that
every node has a similar amount of data, and we denote the
transmission time of the block transfer for all links as Tlink.
This assumption leads to a slotted transmission behavior of
nodes, as depicted in Fig. 5. We define a slot as the duration
of Tlink for transmitting a block of data.

Because of the half-duplex transceivers, when the root s0,j

of S0,j is fully busy in either receiving or transmitting, s0,j

receives nj − 1 packets from the children and transmits nj

packets to the sink. Hence, the minimum time of collection
from a subtree TLB,j is described as follows:

TLB,j = (2nj − 1)Tlink. (1)

This leads to the following theorem.

Theorem 1 (Lower bound of collection time) The lower
bound of overall collection time TLB is described by

TLB = max(N, 2nmax − 1) · Tlink, (2)

where N is the number of sources in the network and nmax

is the maximum number of nodes in any subtree of the sink.

Proof Since the nodes cannot receive multiple packets si-
multaneously, NTlink is a trivial lower bound to receive all
packets. However, as in the above discussion, we need at least
(2nmax − 1)Tlink for the largest subtrees. �
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B. Collection Time of MSF Scheduling
In the following, we prove that MSF scheduling can achieve

exactly the minimal collection time presented in Theorem 1.
We start to show that all nodes except the sink can always
receive soon after their buffer becomes empty; that is, nodes
can always follow rule 2 of MSF scheduling. Then, we
describe the recurrence formula for the remaining blocks in
each subtree at each 2 k slots. Finally, we derive the recurrence
formula between the total number of nodes and the total time
of collection, and prove that MSF scheduling needs exactly
the minimum time of Theorem 1 to complete collection. We
define a subtree that has remaining blocks to transfer as an
active subtree.

Lemma 1 By applying MSF scheduling, a node with an empty
buffer at slot k can receive all its children which are the root
nodes of the active subtrees.

Proof We prove this by induction of the slot. (i) For all nodes
with an empty buffer at some slot k ≥ 1, suppose that they
can receive from all children that are the roots of the active
subtrees. Then, any node i with an empty buffer receives from
a child si,j(= i′), and the buffer node i′ is empty at the
beginning of the next slot k + 1. We now consider child si′,j′

of node i′. The buffer of si′,j′ is empty or full at slot k. If node
si′,j′ has an empty buffer at slot k, by the above assumption,
it can receive from one of its children that are roots of its
active subtrees. If node si′,j′ has a full buffer at slot k, it is
idle at the slot because its parent i′ is communicating with
node i. Hence, at slot k +1, node i′ can receive all the active
children. This holds for all nodes with empty buffers at slot
k + 1.

(ii) At the beginning of collection, i.e., when k = 1, all
nodes have a block in their buffers, and a sink’s child s0,j

begins a block transfer. Then, at slot 2, the s0,j’s buffer
is empty, and s0,j is obviously able to receive from all its
children.

(i) and (ii) indicate that any node with an empty buffer at
the beginning of a slot can receive from all the active children.
�

Then, we obtain the following corollary directly from
Lemma 1.

Colorally 1 By applying MSF Scheduling, any node with an
empty buffer can be ready for transmission after a slot. In other
words, any node can potentially transmit once every two slots.

Proof Through MSF scheduling, when a node completes a
block transfer at a certain slot, its buffer becomes empty. From
Lemma 1, it can receive from its child node and is ready to
send. �

Note that Lemma 1 and Corollary 1 are derived from the fact
that a node with an empty buffer immediately can receive
from its children, and the actual order of the subtrees does
not matter.

Next, we introduce the recurrence formula for the remaining
blocks in each subtree at each 2 k slots. We define a cycle as
a couple of slots here. Let Rk = {rk

j |rk
1 ≥ rk

2 ≥ · · · ≥ rk
S0
}

be a set of the number of remaining blocks in S0 subtrees of
the sink and sorted in nonincreasing order.

Lemma 2 Through MSF scheduling, for Rk =
{rk

1 , rk
2 , rk

3 , . . . , rk
S0
} at an arbitrary cycle k, Rk+1 is

described by

(i)rk
1 ≥ rk

2 > 0,

Rk+1 = sort{rk
1 − 1, rk

2 − 1, rk
3 , . . . , rk

S0
} (3)

(ii)rk
1 > rk

2 = rk
3 = · · · = rk

S0
= 0,

Rk+1 = {rk
1 − 1, 0, . . . , 0} (4)

where sort represents a descending sort.

Proof Equation (3) gives the number of remaining blocks in
each subtree after the sink receives from the root of the largest
subtree and then receives the root of the second largest subtree
during cycle k. Equation (4) gives the number of remaining
blocks in each subtree after the sink receives from the root of
the largest subtree at the first slot of cycle k and is idle at the
second slot.

Now, we start to show that equation (3) holds for any cycle
by induction. Suppose equation (3) holds for cycle k. Then,
Rk+1 consists of {rk

1 −1, rk
2 −1, rk

3 , . . . , rk
S0
}. Since rk

1 ≥ rk
2 ,

at the first slot of cycle k +1, i.e., slot 2k +1, the sink should
be able to receive from the child s0,i where rk+1

i = max{rk
1 −

1, rk
3 , . . . , rk

S0
}. Corollary 1 ensures that the sink can receive

from an arbitrary node of its children at slot 2k+1. Similarly,
at the second slot of cycle k +1, i.e., slot 2k +2, the sink can
receive from all the nodes except for those that transmitted at
the previous slot. In addition, at the beginning of cycle 1, the
sink can receive from all the children trivially. Hence, equation
(3) holds for arbitrary cycle k by induction.

Equation (4) is proved in a similar way. �

V. IMPLEMENTATION AND EVALUATION

We implemented a prototype of MSFCP using the IRIS
Mote platform, which is based on 802.15.4-compliant RF230
radio. We used the TinyOS software platform. We set the
packet length at 117 bytes including 100 bytes of sensed data
corresponding to 16 samples of a 3-axis accelerometer. We
achieved a throughput of 184 kbps without CCA in these
settings.

We evaluated the impact of block size and topologies on
the throughput, and we present our findings here.

First, we show the relationship between block size (number
of packets contained in one block) and link throughput in
Fig. 6. For larger block sizes, overhead is reduced, but more
memory is required. Although typical sensor nodes have
memory limitations (e.q. 8 k bytes on IRIS Mote and 10 k
bytes on Tmote Sky), 2–3 k bytes of RAM is adequate for
efficient block transfer, as shown in Fig. 6. Thus, we set the
number of packets in a block at 20.
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Topology 1
Topology 2

Topology 3 Topology 4
Fig. 7. 9-node routing trees

We conducted a test on four 9-node routing trees on the
testbed. The trees had the topologies shown in Fig. 7. In these
settings, N = 8 and nmax = 8, 6, 3, 2, respectively. The
ideal throughput is the overall throughput without any protocol
overhead, which is calculated based on the link throughput of a
block size of 20 packets. Fig. 8 shows that 80-95 percent of the
ideal throughput wasis achieved. This throughput degradation
is caused by channel switching and packet losses.

VI. CONCLUSION AND FUTURE WORK

We proposed the Maximum-Subtree-First Collection Pro-
tocol for high throughput bulk transfer in wireless sensor
networks. When combined with hop-count-based channel as-
signment and hop-by-hop block transfer, Maximum-Subtree-
First scheduling can mitigate both intra-path and inter-path
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interference. We presented the lower bound on collection time
and showed the optimality of MSF scheduling in ideal settings.
We implemented a prototype of MSFCP on the IRIS Mote
platform and evaluated the efficiency of block transfer and
overall throughput of MSFCP.

In the future, we will focus on the construction of a balanced
topology. Theorem 1 indicates that the routing tree should be
constructed in a balanced manner so that nmax ≤ (N + 1)/2.
Constructing a tree where nmax ≤ (N + 1)/2 on an arbitrary
graph G is a kind of Capacitated Minimal Spanning Tree
Problem, and is proven to be NP-complete[14]. For MSFCP,
each node needs information on its subtrees; thus, a balanced
routing tree construction integrated with a function to gather
subtree information is required.
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