ワイヤレスハーネスのための 2 進 MDS-ID マッチング型ウェイク アップ通信

石田 繁巳^{†a)} 瀧口 貴啓[†] 猿渡 俊介^{††} 森川 博之[†]

Wake-Up Communication Using Binary MDS-ID Matching for a Wireless Harness Shigemi ISHIDA^{†a)}, Takahiro TAKIGUCHI[†], Shunsuke SARUWATARI^{††}, and Hiroyuki MORIKAWA[†]

あらまし ワイヤレスハーネスの実現に向けて機器内に存在するセンサノードの省電力化が重要となることか ら,筆者らは、ワイヤレスハーネスへのウェイクアップ通信技術の適用を検討している.本論文では、ワイヤレ スハーネスにおけるウェイクアップ通信の実現に向けた 2 進 MDS-ID マッチングを示す. 2 進 MDS-ID マッチ ングでは、ハミング距離の離れた ID である 2 進 MDS-ID を用い、ハミング距離に基づいて ID マッチングを行 う.回路実装とシミュレーション評価を行い、2 進 MDS-ID マッチングを用いたウェイクアップ通信が、遅延を 増加させることなく小規模な回路で高いエラー耐性を実現できることを示す.

キーワード ワイヤレスハーネス, 省電力無線通信, ウェイクアップ通信, ID マッチング

1. まえがき

自動改札機や自動券売機,コピー機,自動車等の設計・保守コスト削減に向けて,機器内部のハーネスを 無線化するワイヤレスハーネスの検討が進められて いる[1].特に,機器内に存在するコントロールユニッ ト・センサノード間の配線は複雑かつ長いことが多く, 無線化によるハーネス削減への要望が大きい.

ワイヤレスハーネスを用いる場合,機器内のセンサ ノードは電池駆動となるため,センサノードの省電力 化が重要となる.一般に,無線センサノードにおいて は通信の消費電力が支配的となることが知られている ため[2],通信の低消費電力化が求められる.

筆者らは、ワイヤレスハーネスにおける機器内セン サノードの通信の低消費電力化に向けてウェイクアッ プ通信技術 [3]~[19] の適用を検討している. 図1 に ウェイクアップ通信技術の概要を示す.ウェイクアッ プ通信技術はスリープ状態にある受信機を送信機から

^{††}静岡大学情報学部,浜松市 Faculty of Informatics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu-shi, 432-8011 Japan

a) E-mail: ishida@mlab.t.u-tokyo.ac.jp

図 1 ウェイクアップ通信技術の概要 Fig. 1 Overview of a wake-up communication technology.

の信号でウェイクアップさせる技術である.

送信機はウェイクアップ送信モジュールと従来のデー タ通信モジュール(IEEE 802.15.4 モジュール等)か ら構成される.データ通信時には,通信したい受信機 の ID が含まれるウェイクアップ要求信号を通信した い受信機に対して送信する.

受信機はウェイクアップ要求信号を検出するウェイ クアップ受信モジュールと、従来のデータ通信モジュー ルから構成される.ウェイクアップ受信モジュールは 信号検出回路(信号の有無を検出する回路)と ID 受 信・マッチング回路(復調・復号・ID マッチング)に より構成される超低消費電力な受信機であり、信号検 出回路は常時動作して受信待機する.ウェイクアップ 受信モジュールはウェイクアップ要求信号を検出する

[†]東京大学先端科学技術研究センター,東京都 RCAST, The University of Tokyo, 4–6–1 Komaba, Meguroku, Tokyo, 153–8904 Japan

と ID 受信・マッチング回路をウェイクアップさせ, ID が自端末宛であればデータ通信モジュールをウェイク アップさせて通信を開始する.

機器内センサノードのウェイクアップ通信では、セ ンサデータは機器の制御に利用されるため、通信エ ラー対策を行ってセンサノードを高信頼にウェイク アップさせる必要がある.このときのエラー対策は、 低遅延でウェイクアップできること、小規模な回路で 実装できること、低消費電力で動作することが求めら れる.

これまでのウェイクアップ通信の研究では通信エ ラーの影響について十分な検討が行われておらず,再 送やエラー訂正などの現行の通信エラー対策を適用し た後に ID マッチングを行うことが暗黙的に想定され ている.しかしながら,これらのエラー対策を機器内 ウェイクアップ通信で用いると,遅延の増加や回路規 模の増加,受信待機電力の増加などといった副次的な 問題が生じる.

これに対し、本論文では、ID マッチング自体にエ ラー耐性をもたせる手法として、2進 MDS-ID マッチ ングを示す.2進 MDS-ID (Maximum Distance Separable Identifier)は、可能な限り短い ID 長によって 各 ID 間のハミング距離が一定値以上となるように設 計された ID である.2進 MDS-ID のハミング距離 の特性を利用してハミング距離に基づく ID マッチン グ [20] を行うことにより、エラー耐性を有する ID マッ チングを実現する. ID 長の短い2進 MDS-ID を用い ることで、ウェイクアップ要求信号の送信時間増加を 抑制しつつ小規模な回路で高いエラー耐性を得ること ができる.2進 MDS-ID マッチングを回路実装とシ ミュレーションによって評価した結果、受信待機電力、 遅延を削減しつつ、BCH 符号と同等のエラー耐性を 小規模な回路によって実現できることが分かった.

本論文の貢献は以下の4点である.

- ウェイクアップ通信の ID マッチングにおいて、 エラー耐性を得るために MDS (Maximum Distance Separable) 符号の考え方を応用してい る点。
- 2進 MDS-ID の生成方法を示している点.
- ハミング距離に基づく ID マッチング [20] をも 含めた 2 進 MDS-ID マッチング回路全体の構 成方法を示している点.
- シミュレーション評価を行い、AWGN (Additive White Gaussian Noise) 環境において 2

進 MDS-ID マッチングにより受信待機電力,遅 延が削減されることを示している点.

本論文の構成は以下のとおりである. 2. では機器内 センサノードの通信へのウェイクアップ通信技術の適 用について述べる. 3. では2進 MDS-ID マッチング について述べる. 4. ではシミュレーションによりウェ イクアップ率,ウェイクアップ遅延,受信待機電力の 評価を行うとともに,回路実装により2進 MDS-ID マッチングが小規模な回路で実現可能であることを示 す. 5. では4.の評価結果に対して, ID 長,ビット誤 り率,誤ウェイクアップ率,許容エラービット数の観 点から議論を行う. 最後に6. でまとめとする.

2. 機器内ウェイクアップ通信

自動改札機や自動券売機, コピー機, 自動車等の内 部には多数のセンサノードが配置されており, 各セン サノードはバス配線によってコントロールユニットと 接続されている. センサノードとコントロールユニッ トはコントロールユニットをマスタ, センサノードを スレーブとしてマスタ・スレーブ型の通信を行う. 通 信を行う場合, コントロールユニットはセンサノード に対してデータを要求し, 要求を受けたセンサノード はコントロールユニットに対してデータを送信する. コントロールユニットは, 取得したセンサデータを用 いてモータ等のアクチュエータの制御を行う.

ハーネス削減の観点から,コントロールユニットと センサノード間の通信を無線化したいという要望は大 きい[1]. 機器内のセンサノードの通信を無線化する 場合,コントロールユニットとセンサノードのそれぞ れに無線通信モジュールを搭載させてコントロールユ ニットを中心とするスター型ネットワークを構築する. このとき,各センサノードは,電池で駆動することが 想定されるため,受信待機時の低消費電力化を図るべ くウェイクアップ通信技術を適用する.

図 2 に機器内ウェイクアップ通信の通信プロセス を示す.(1) コントロールユニットは,ウェイクアッ プ送信モジュールを用いて通信したいセンサノード の ID が含まれるウェイクアップ要求信号を送信する. (2) センサノードのウェイクアップ受信モジュールは, ウェイクアップ要求信号を受信するとウェイクアップ 要求信号に含まれる ID と自センサノードの ID を用 いて ID マッチングを行う.(3) 自ノード宛のウェイク アップ要求信号であると判定した場合にデータ通信モ ジュールをウェイクアップさせ,(4) コントロールユ

図 2 機器内ウェイクアップ通信の通信プロセス Fig. 2 Communication process of an in-machine wake-up communication.

ニットに対して ACK を送信して通信が開始される.

機器内においてこのようなウェイクアップ通信を行 うためには,通信エラー対策が重要となる.機器内 ウェイクアップ通信においてウェイクアップ要求信号 に通信エラーが発生すると通信対象のセンサノードが ウェイクアップせず,センサノードとの通信を行うこ とができない.また,通信エラーによって通信対象以 外のセンサノードが誤ってウェイクアップし,無駄に 電力を消費することも考えられる.特に,機器内は多 数のアクチュエータが複雑に配置された狭い空間であ り,アクチュエータから発生する雑音や複雑なマルチ パスの影響などによって通信エラーが発生することが 予想される.

機器内ウェイクアップ通信のエラー対策では,高い エラー耐性を得るとともに以下に示す三つの要求を同 時に満たすことが求められる.

一つ目の要求は通信遅延の抑制である.機器内通信 で扱うセンサデータはアクチュエータの制御に使用さ れるため,通信遅延は機器の動作遅延を招き,機器の 提供するサービスに影響を与える.また,機器内通信 規格によって許容される通信遅延が制限される場合も ある.例えば,車両内通信規格のLIN [21] ではスレー ブノードが 100 ms 以内にマスターノードに応答を返 すことが求められる.

二つ目の要求は小規模な回路での実現である.機器 内ウェイクアップ通信は、コントロールユニットとセ ンサノードに無線通信機能を具備させることで実現さ れる.無線通信機能を有するコントロールユニット・ センサノードを現行のデバイスと同程度のサイズで実 現するために小規模な回路によって無線通信を実現す ることが求められる.小規模な回路での実現は材料コ ストの削減や設計・製造・試験工数の削減、歩留り改 善という点で低コスト化にも貢献する. 三つ目の要求は低消費電力での実現である.機器内 でのウェイクアップ通信は省電力化を目的とするもの であるため、上記のような要求を満たしつつエラー対 策を行って消費電力が増加してしまっては意味がない. センサノードの電池交換は機器の保守の際にしか行う ことができないため、自動車など保守の頻度が数年に 1回程度である機器の存在を考慮するとセンサノード を低消費電力で動作させる必要がある.

ウェイクアップ通信の研究は、これまでウェイク アップ型の通信方式[3]~[10] やウェイクアップ受信モ ジュールの省電力化[11]~[19] を中心として進められ ており、通信エラーの影響について十分な検討が行わ れてこなかった.ウェイクアップ通信に関するこれら の研究では、現行の無線通信におけるエラー対策を適 用した後に ID マッチングを行うことを暗黙的に想定 している.

最も単純なエラー対策として,再送を行う手法が挙 げられる [22]~[27].機器内ウェイクアップ通信の場 合,コントロールユニットがウェイクアップ対象のセ ンサノードから ACK を受信するまでウェイクアップ 要求信号を再送する方法が考えられる.ウェイクアッ プ要求信号の再送は簡単なソフトウェア処理によって 実現され,センサノードの高信頼なウェイクアップを 可能とする.しかしながら,コントロールユニットに おける ACK の受信待ち時間の必要性から通信遅延が 増加する.また,センサノードにおけるウェイクアッ プ要求信号の受信回数の増加により,センサノードの 消費電力増加という問題にもつながる.このため,再 送回数を削減することが重要となる.

エラー対策としては、エラー訂正を行うことも考え られる [28]~[32]. 機器内ウェイクアップ通信の場合, エラー訂正を用いることでウェイクアップ要求信号を 復元することができるため、少ない再送でセンサノー ドをウェイクアップさせることが可能となる. しかし ながら、エラー訂正能力と符号化・復号処理の演算量 がトレードオフの関係にあるため、高いエラー耐性を 得るために多数のレジスタ・演算回路が必要となり、 小規模な回路での実現という要求を満たすことができ ない.

ウェイクアップ通信においてエラーの影響を考慮し ている研究としては文献 [33] 及び [34] が挙げられる. 文献 [33] では, PN(擬似ノイズ)符号から選択した 二つの符号語を用いて "1", "0"を表し,受信側で相 関器によって復号することで低消費電力に高いエラー 耐性を得る手法が示されている. PN 符号を用いるこ とで,直接スペクトル拡散 (Direct Sequence Spread Spectrum: DSSS) による拡散利得を得ることに成功 している.

文献[34]では、無線LAN アクセスポイントをウェ イクアップさせる"Radio-On-Demand"においてウェ イクアップ要求信号の誤りの影響を軽減するために、 BCH 符号を用いた ID 設計及び ID マッチング方式が 示されている. 無線LAN アクセスポイントの ESSID をもとに生成した BCH 符号の ID を用い、文献[20] と同様にハミング距離に基づく ID マッチングを行う ことでエラー耐性の高い ID マッチングを実現してい る.エラー耐性の評価として BCH 符号を用いる ID マッチング方式のウェイクアップ率を検証しているが、 通信遅延・受信待機電力・回路規模の評価は行われて いない.

3. 2 進 MDS-ID マッチング

2. で述べたように,機器内ウェイクアップ通信の実現・ 現に向けては通信遅延の抑制・小規模な回路での実現・ 低消費電力での実現という三つの要求を満たすエラー 対策が求められる.ここで,ウェイクアップ通信では 正しい ID の復元が必ずしも必要ではない点に着目す る.ウェイクアップ対象として指定されたセンサノー ドには「正しい ID」が登録されているため,ウェイク アップ要求信号の ID がエラー訂正によって「正しい ID」に復元され得るか否かを判定できれば ID マッチ ングを実現できる.エラー訂正の可否は正しい ID か らのハミング距離によって判断できる.

ウェイクアップ要求信号の送信時間は遅延に直接影響するため, ID 長は可能な限り短いことが望ましい. 本章では, このような考えに基づいて設計された2進 MDS-ID (Maximum Distance Separable Identifier) マッチングを示す.2進 MDS-ID マッチングでは,可 能な限り短い ID 長によって ID 間の最小ハミング距 離を保証するように設計された2進 MDS-ID を用い ることで, エラー訂正と同等のエラー耐性を小規模な 回路によって実現する.

3.1 2進 MDS-ID マッチングの概要

図3に2進 MDS-ID マッチングの全体像を示す.2 進 MDS-ID マッチングは,2進 MDS-ID の生成及び センサノードへの割当と,ハミング距離に基づく ID マッチングという二つのフェーズによって実現される. 第1のフェーズでは2進 MDS-ID をセンサノード

- 図 3 2 進 MDS-ID マッチングの全体像 (a) フェーズ 1:
 2 進 MDS-ID の生成と割当 (b) フェーズ 2: ハミン グ距離に基づく ID マッチング
- Fig. 3 Overview of binary MDS-ID matching; (a) phase 1: binary MDS-ID generation and assignment, (b) phase 2: ID matching based on Hamming distance.

の個数だけ生成し,各センサノードに一つずつ2進 MDS-IDを割り当てる.コントロールユニットには通 信相手となるセンサノードの2進 MDS-IDを登録す る.2進 MDS-IDの詳細については**3.2**で述べる.

第2のフェーズではセンサノードにおいてハミング 距離に基づく ID マッチングを行う. ハミング距離に 基づく ID マッチングの詳細については 3.3 で述べ る.コントロールユニットは通信したいセンサノード の2進 MDS-ID を含めたウェイクアップ要求信号を 送信する. センサノードがウェイクアップ要求信号を 受信すると、ウェイクアップ要求信号に含まれる2進 MDS-ID を抽出し、自ノードの2進 MDS-ID とのハ ミング距離を算出する.ウェイクアップ要求信号の2 進 MDS-ID と自ノードの2進 MDS-ID のハミング距 離が許容エラービット数以下の場合に ID が一致した と判定し、データ通信モジュールをウェイクアップさ せる.許容エラービット数は、通信環境の E_b/N_0 (情 報1ビット当りの信号エネルギー対雑音電力密度比) とシステムで要する通信遅延を考慮して決定する必要 がある.詳細については4.4 で述べる.

3.2 2進 MDS-ID

2進 MDS-ID は、可能な限り短い ID 長によって ID 間の最小ハミング距離を保証するように設計された ID である.図4に、最小ハミング距離3、ID 数16 の2進 MDS-ID の例を示す.図に示すように、全て の ID 間のハミング距離が3以上となっている.2進 MDS-ID マッチングでは、各センサノードの ID はあ 0000000, 0000111, 0011001, 0011110, 0101010, 0101101, 0110011, 0110100, 1001011, 1001100, 1010010, 1010101, 1100001, 1100110, 1111000, 1111111

- 図 4 2 進 MDS-ID の例 (最小ハミング距離 3, ID 数 16)
- Fig. 4 Example of binary MDS-IDs (Hamming distance \geq 3, number of IDs = 16).

らかじめ生成された 2 進 MDS-ID から一つずつ選択 され,機器の製造時に各センサノードへ登録される. それと同時に,コントロールユニットには通信を行う センサノードの 2 進 MDS-ID を登録する.通信を行う 際には登録された 2 進 MDS-ID を用いてコントロー ルユニットが通信相手のセンサノードをウェイクアッ プさせる.

2進 MDS-ID を生成する場合,まず,ID 間の最小 ハミング距離 d を決定する.許容エラービット数を t とすると,t bit の誤りが生じた場合に ID 間のハミン グ距離が1以上離れていることから,ID 間の最小ハ ミング距離 d は

$$d = 2t + 1 \tag{1}$$

となる.

次に, ID 数 N と,最小ハミング距離 d より, ID 長 n を求める.シングルトン限界 [35] によれば, q 進数 の符号において,符号語の長さが n であるとき,ハミ ング距離が d 以上離れている符号語の数 N は,

 $N \le q^{n-d+1}$

となる.2進 MDS-ID では2進数を用いるため,q=2 を用いて次の式が得られる.

 $N \le 2^{n-d+1}$

両辺を2を底とする対数を取ると

 $\log_2 N \le n - d + 1$

となる.この式をnについて解くと

 $n \ge \log_2 N + d - 1$

が得られる. すなわち, ID 数 N を実現可能な最小の ビット数 n は

$$n = \lceil \log_2 N \rceil + d - 1 \tag{2}$$

となる. ここで, [x] は x 以上の最小の整数である.

最後に,求められた $n \in ID$ 長として制約充足問題 を解くことで 2 進 MDS-ID を生成する.生成する N個の ID を制約充足問題の変数 X_1, X_2, \dots, X_N とし, 変数がとり得る値を表す領域を 0 から $2^n - 1$ までの 整数とする.各変数間のハミング距離が d 以上という 制約の下に制約充足問題を解いて変数を決定すること で,N 個の 2 進 MDS-ID が生成される.

2進 MDS-ID を生成するための制約充足問題の解 法として Backtrack 法 [36]~[38] を用いる場合を以下 に示す. Backtrack 法では,制約のチェックを随時行 いつつ X_1 から順に変数を決定していく.まず, X_1 に 0, X_2 に 0 を代入し,制約のチェック (ハミング距離 の確認)を行う. X_1 と X_2 のハミング距離は 0 であ るため,最後に決定した変数 X_2 の決定をやり直し, 領域内の次の値 1 を代入する.同様にして制約チェッ クを行い,最終的に X_1 と X_2 のハミング距離が d以 上になった場合に次の変数 X_3 の決定に移る.このよ うに,制約を満たさない場合に変数決定を遡ってやり 直し,最終の変数 X_N まで決定する.

ただし、ハミング限界 [28] などの存在により、式 (2) で求めた ID 長では N 個の ID を生成できない場合も 存在する. N 個の ID を生成できなかった場合には、 ID 長 n を一つ増加させて再び N 個の ID 生成を試 みる.

以上の処理を N 個の ID が生成されるまで繰り返す. 例として,必要な ID 数 N が 16,許容エラービット 数 t が 1 の場合を考える.式 (1) より d = 3 が得られ る.得られた d を式 (2) に代入すると, n = 6 が得られ る.得られた n = 6 と N = 16 をもとに,Backtrack 法により ID の生成を行う.しかしながら,n = 6 の ときには 16 個の ID は生成できないため, ID 長 n を 一つ増加させ,n = 7で再び ID の生成を行う.最終 的に生成された 2 進 MDS-ID は図 4 となる.

前述の Backtrack 法を用いた 2 進 MDS-ID の生成 は膨大な計算量を要する. ハミング限界を利用して計 算を部分的に省略するなどの方法で計算の効率化を図 ることができると考えられる. なお,機器内ウェイク アップ通信では機器製造後にセンサノード数が増減し ないため, 2 進 MDS-ID の生成は機器の製造時に 1 度 だけ行われる. 生成された 2 進 MDS-ID は ID とい う固定値としてセンサノードとコントロールユニット に登録され,運用時には 2 進 MDS-ID の生成を行わ ず,登録された ID をそのまま利用する. このため, 2 進 MDS-ID 生成時の計算量は機器の運用時には影響

図 5 ハミング距離に基づく ID マッチング回路の構成 Fig. 5 Block diagram of an ID matching circuit based on Hamming distance.

しない.

3.3 ハミング距離に基づく ID マッチング

ハミング距離に基づく ID マッチングは, ウェイク アップ要求信号に含まれる ID とセンサノードの ID とのハミング距離に基づいて一致判定を行う ID マッ チングである.二つの ID 間のハミング距離が許容エ ラービット数 t 以下であれば, ID マッチング回路は二 つの ID が一致すると判定してデータ通信モジュール をウェイクアップさせる.ハミング距離に基づく ID マッチングを行うことにより, 通信エラーが t bit 以下 の場合に通信対象のセンサノードをウェイクアップさ せることができる.

図 5 にハミング距離に基づく ID マッチング回路 の構成を示す. ハミング距離に基づく ID マッチング 回路は, ID レジスタ, ID 比較回路, 不一致ビット数 カウント回路で構成される. ID レジスタは, センサ ノードの ID を保持している回路である. ID 比較回路 はウェイクアップ要求信号に含まれる ID と ID レジ スタに登録されている ID をビットごとに比較し, 不 一致ビットを示す信号を出力する. 不一致ビット数カ ウント回路は ID 比較回路から出力された不一致ビッ ト信号の数をカウントし, 二つの ID 間のハミング距 離を算出する. 算出されたハミング距離が許容エラー ビット数 t 以下である場合にウェイクアップ信号を出 力する.

ハミング距離に基づく ID マッチング回路を構成す る ID レジスタ, ID 比較回路,不一致ビット数カウン ト回路は, ID 長を n とすると,それぞれ,n 個のフ リップ・フロップ回路,n 個の2入力 XOR ゲート,n 進カウンタという回路で実現できる.2入力 XOR ゲー トは CMOS 回路の基本となる2入力 NAND ゲート を四つ用いて実現され,小規模な回路となる.n進カ ウンタは [log₂n] 個のフリップ・フロップ回路で実現 され, ID レジスタよりも小規模な回路となる.

ハミング距離に基づく ID マッチング回路の比較と して,エラー訂正を行う ID マッチング回路について 考える.エラー訂正を行う ID マッチング回路は多数

Fig. 6 Block diagram of an ID matching circuit with error correction using Hamming code.

の乗算回路とレジスタを必要とするため、大規模な回路となる.

エラー訂正を行う ID マッチング回路の例として, 図 6 にハミング符号を用いてエラー訂正を行う ID マッチング回路の構成を示す.ハミング符号を用いて エラー訂正を行う ID マッチング回路は, ID レジスタ, エラー訂正回路, ID 比較回路から構成される.エラー 訂正回路はシンドローム計算回路とエラービット訂正 回路から構成される.シンドローム計算回路はウェイ クアップ要求信号に含まれる ID にパリティ検査行列 を乗じてシンドロームを計算し,エラービット訂正回 路は計算されたシンドロームを用いてエラービットを 訂正する.エラー訂正後の ID とセンサノードの ID とを比較し,全てのビットが一致する場合にウェイク アップ信号を出力する.

図 5 と図 6 を比較すると分かるように、ハミング 距離に基づく ID マッチング回路も、エラー訂正を行 う ID マッチング回路も共に ID レジスタと ID 比較回 路を要する. ID 比較回路についてはハミング距離に 基づく ID マッチング回路と同様に ID 長を n とする と n 個の 2 入力 XOR ゲートで実現できる. ハミン グ距離に基づく ID マッチング回路とエラー訂正を行 う ID マッチング回路で異なるのが、不一致ビット数 カウント回路とエラー訂正回路である. 先に述べたよ うに、不一致ビット数カウント回路が [log₂ n] 個のフ リップ・フロップ回路で実現できるのに対し、エラー 訂正回路は積和演算を行うため、n ビットのレジスタ・ 乗算回路を複数必要とする.

4.評価

3. で示した 2 進 MDS-ID マッチングについて, ウェ イクアップ率, ウェイクアップ遅延, 受信待機電力, 回路規模の評価を行った.

4.1 評価環境

ウェイクアップ通信における受信機は、図1に示し たように、ウェイクアップ受信モジュールとデータ通 信モジュールから構成される.

ウェイクアップ受信モジュールはウェイクアップ要 求信号の信号検出と復調を行うアナログ回路と ID マッ チングを行うディジタル回路とから構成される.

アナログ回路については,文献[8] で設計したもの を用いた.文献[8] で設計したウェイクアップ受信モ ジュールアナログ回路の変調方式は ASK,通信周波 数帯は距離による電波の減衰が比較的小さい 950 MHz 帯である.通信路符号としてマンチェスタ符号を用い ており,ボーレートは 40 kBaud である.ウェイクアッ プ受信モジュールアナログ回路の消費電力は,受信待 機時には 12.4 μW, ID 受信時には 310.3 μW である.

ディジタル回路については、新たに設計したものを 用いた. Verilog HDL を用いて ID マッチング回路を 実装し, IC Compiler [39] を用いて論理合成を行った. IC Compiler による論理合成の結果から回路面積・消 費電力を取得した.

データ通信モジュールはセンサノードで一般的に用 いられている IEEE 802.15.4 モジュール CC2520 [40] を想定した. CC2520 の受信待機電力は電源電圧 1.8 V において 33.84 mW である.

このようなウェイクアップ受信モジュールとデータ 通信モジュールを用い,2進 MDS-ID マッチングの性 能を相対的に評価するために,以下に示す三つの ID マッチング方式で性能の比較を行った.

(1) 完全一致方式 (Complete Match)

本方式は、受信したウェイクアップ要求信号の ID とセンサノードの ID をそのまま比較し、完全に一致 する場合にデータ通信モジュールをウェイクアップさ せる方式である. ID 長 n は、ID 数 N を表すことが できる最小のビット数となるため、三つの方式の中で 最も短くなる.エラー対策を行わないため、通信遅延 と平均受信待機電力の評価でエラーの増加と共に性能 が低下することが予想される.本方式の評価は他の方 式との比較を行う上でのベースラインとなる.

(2) BCH-ID 方式 (BCH-ID)

本方式は,BCH 符号を ID として用いてハミング距 離に基づいた ID マッチングを行う方式である.Radio-On-Demand [34] に示された ID マッチング方式を想 定している.

(3) 2進 MDS-ID 方式 (Binary MDS-ID)

本方式は, **3**. で示した提案方式である. 2 進 MDS-ID を ID として用いてハミング距離に基づいた ID マッチングを行う. ID 長 *n* は, 完全一致方式よりも 長く, BCH-ID 方式よりも短くなる.

評価は AWGN (Additive White Gaussian Noise) 環境を想定したシミュレーションによって行った.機 器内における通信環境は、

主に、

機器雑音の影響、

マ ルチパスの影響という二つの点で AWGN 環境と異な る [41], [42]. 一つ目の機器雑音の影響は, 適切な通信 周波数帯を選択することで回避できることが報告さ れている [41], [43]. 二つ目のマルチパスの影響は、シ ンボル間干渉、周波数選択性フェージングの二つに分 けることができる、シンボル間干渉については、ウェ イクアップ通信が低速であるために影響は小さいと考 えられる.機器内のマルチパス環境における遅延プロ ファイルの広がりは1µsよりも短いことが報告され ており[44], 40 kBaud で通信するウェイクアップ通信 の1シンボル時間 25 µs に比べて十分に短い.また, 周波数選択性フェージングの影響については、文献[1] で報告されている適応的な通信チャネル(周波数)の 選択などによって回避できると考えられる.

また,今回の評価では,ID マッチング時の性能を とることを目的としているため,通信時にエラー耐性 を得る文献 [33] の DSSS を用いる手法は評価に含め ていない.DSSS を用いるなどの通信時のエラー耐性 を高める手法は,本論文で対象としている ID マッチ ングによってエラー耐性を得る BCH-ID 方式や 2 進 MDS-ID 方式と組み合わせることで,更なる性能の向 上が期待できると考えている.

4.2 ウェイクアップ率

2進 MDS-ID マッチングを用いることでウェイク アップ通信のエラー耐性が高まることを示すため、ウェ イクアップ率の比較を行った.ウェイクアップ率とは、 コントロールユニットがウェイクアップ要求信号を1 回送信したときに、対象のセンサノードがウェイク アップする確率である.

4.1 に示した三つの方式について、ランダムな ID をコントロールユニットがウェイクアップ要求信号と して送信する通信シミュレーションを行った.送信し た ID と受信したウェイクアップ要求信号の ID とを用 いて ID マッチングを行い、 E_b/N_0 (情報 1 ビット当 りの信号エネルギー対雑音電力密度比)を変化させた 場合のウェイクアップ率を算出した.シミュレーショ ンの試行回数は 10,000 回である.

図 7 に, ID 数 $N = 10^{12}$, 許容エラービット数t = 5の場合の, E_b/N_0 に対するウェイクアップ率を示す. 図 7 より次の三つのことが分かる.

図 7 ウェイクアップ率 (ID 数 $N = 10^{12}$, 許容エラー ビット数 t = 5)

Fig. 7 Wake-up probability (the number of IDs $N = 10^{12}$, the number of allowable error bits t = 5).

 (1) 2進 MDS-ID 方式は3方式の中で最もウェイ クアップ率が高い.ハミング距離の離れた2進 MDS-ID を用い,ハミング距離に基づいて ID マッチングを 行うことで,エラーが発生した場合にも ID の一致を 正しく判定できるためと考えられる.

(2) BCH-ID 方式のウェイクアップ率は, 完全一 致方式よりも高いが, 2進 MDS-ID 方式よりも低い. BCH-ID 方式では 2進 MDS-ID 方式と同様にハミン グ距離の離れた ID となっているため, 完全一致方式 よりも高いウェイクアップ率となると考えられる. 一 方, BCH-ID 方式は 2進 MDS-ID 方式よりも長い ID を用いているため, 発生するエラービットの数が多く なり, 2進 MDS-ID 方式よりもウェイクアップ率が低 くなると考えられる.

(3) 完全一致方式は3方式の中で最もウェイク アップ率が低い. E_b/N_0 が小さくなるに従ってビット 誤りが発生する確率が増加し, ID が一致しないと判 定される確率も増加するためだと考えられる.

以上より,2進 MDS-ID マッチングを用いること で,完全一致方式に比べて, E_b/N_0 が小さい環境でも 高いウェイクアップ率が得られることが示された.

4.3 誤ウェイクアップ率

ウェイクアップ率が高くなったとしても、他のセン サノード宛のウェイクアップ要求信号によって誤って ウェイクアップし、受信待機電力が増加することも考 えられる.このような観点から、誤ウェイクアップ率 の比較を行った.誤ウェイクアップ率とは、あるセン サノードが周囲で送信される他ノード宛のウェイク アップ要求信号に対して誤ってウェイクアップしてし

まう確率である.

4.1 に示した三つの方式について, ランダムな ID を選択し, その ID 以外の ID をコントロールユニット がウェイクアップ要求信号として送信する通信シミュ レーションを行った.送信対象から除外した ID と受 信したウェイクアップ要求信号の ID とを用いて ID マッチングを行い, E_b/N_0 を変化させた場合の誤ウェ イクアップ率を算出した.シミュレーションの試行回 数は 100,000 回である.

シミュレーションの結果,完全一致方式,BCH-ID 方式,2進MDS-ID方式の3方式全てで, $E_b/N_0 =$ 0~12dBの範囲において誤ウェイクアップは発生し なかった.誤ウェイクアップ率は大きくても10⁻⁵程 度であるといえる.このような小さな誤ウェイクアッ プ率となるのは,一つのIDに対して様々なハミング 距離のIDが存在するためと考えられる.誤ウェイク アップする確率は,自ノードIDと送信されたIDと のハミング距離が近いほど高くなる.ハミング距離の 近いIDの数は限られているため,特定のビットがエ ラーとなる確率を考慮すると,誤ウェイクアップは極 めて低い確率でしか発生しないものと考えられる.

4.4 ウェイクアップ遅延

ウェイクアップ率が高くなったとしても,2進 MDS-ID マッチングでは完全一致方式に比べて ID 長が長 くなるため,必ずしも通信遅延が削減されるとは限ら ない.このような観点から,ウェイクアップ遅延の比 較を行った.ウェイクアップ遅延とは,コントロール ユニットにおけるウェイクアップ要求信号の送信開始 から,センサノードの ID マッチング回路がウェイク アップ信号を出力するまでの時間である.

図 8 に, ウェイクアップ遅延のモデルを示す. コ ントロールユニットは対象のセンサノードがウェイク アップするまでウェイクアップ要求信号を再送するた め、再送に要する時間もウェイクアップ遅延に含めて いる.ウェイクアップ要求信号の送信時間を t_{send} ,再 送待ち時間を t_{wait} ,再送回数をRとすると、ウェイ クアップ遅延 t_{delay} は以下の式で表される.

$$t_{delay} = t_{send} + (t_{wait} + t_{send})R \tag{3}$$

式(3)の第1項はコントロールユニットが送信する 初回のウェイクアップ要求信号による遅延を表してい る.ウェイクアップ要求信号の送信時間 t_{send} は ID 長 によって変化するため, ID 長とウェイクアップ送受信 モジュールの通信速度から算出した.

式(3)の第2項はウェイクアップ要求信号の再送に 伴う遅延を表している.再送待ち時間 twait は,ウェ イクアップしたセンサノードとコントロールユニット がデータ通信モジュールを用いて通信することを考慮 して1msとした. この値は、データ通信モジュール CC2520がスリープ状態から復帰して送信可能となる時 間の約 0.5 ms と、2.4 GHz 帯における IEEE 802.15.4 通信の ACK フレーム送信時間 (チャネル空き確認時 間を含む)の約0.5msを加えたものである.再送回 数 R はウェイクアップ率から決定した.現在の機器内 通信は有線で構築されているため、エラーフリー伝送 (ビット誤り率が 10⁻⁹ 以下)が実現されていると考え られる.ウェイクアップ通信を行った場合にも同等の 性能が得られるように, エラーフリー伝送において長 さ 100 bit 程度の ID を送る場合を想定し, センサノー ドがウェイクアップしない確率が 10⁻⁷ 以下となるよ うに再送回数 R を決定した.

ウェイクアップ信号の出力までには式 (3)の時間に 加えて ID マッチング処理の遅延を考慮する必要があ るが, ID マッチング処理遅延はウェイクアップ要求 信号の送信時間に比べて十分に短いため無視した. ID マッチング回路は ID の受信中にも動作し, ID の最終 ビットを受信してから 1 クロック後に ID マッチング 結果が出力される. ID の受信に必要なクロック周波 数を考慮すると, 1 クロック分の遅延はウェイクアッ プ要求信号 1 ビットの送信時間 50 µs に比べて十分に 短い. 例えば, 文献 [8] に示された回路の場合, クロッ ク周波数は 855 kHz であるため, ID マッチング処理 遅延は約 1.2 µs である.

図 9 に, ID 数 $N = 10^{12}$,許容エラービット数t = 5の場合の E_b/N_0 に対する平均ウェイクアップ遅延を示す.ウェイクアップ率が 0 の場合には再送回数が無限大となってしまうため,便宜的に遅延を 10^8 ms と

図 9 平均ウェイクアップ遅延 (ID 数 $N = 10^{12}$, 許容 エラービット数 t = 5)

Fig. 9 Average wake-up delay (the number of IDs $N = 10^{12}$, the number of allowable error bits t = 5).

してプロットした.図9より次の二つのことが分かる. (1) 3方式の中で2進 MDS-ID 方式の平均ウェ イクアップ遅延が最も小さい.これは、2進 MDS-ID マッチングによってウェイクアップ率が高まり、ウェ イクアップ要求信号の再送回数が減少するためと考え られる.

(2) 2進 MDS-ID 方式と BCH-ID 方式では, E_b/N_0 が大きい場合に平均ウェイクアップ遅延がほ ぼ一定となっている.これは, E_b/N_0 が大きい場合に ウェイクアップ率がほぼ1となり,再送回数がほぼ一 定となるためと考えられる.

2. で挙げた車両内通信規格の LIN の例を考えた場 合,スレーブノードが 100 ms 以内にマスターノード に応答を返すために,ウェイクアップ遅延は 100 ms 以 下であることが必要となる.図9より,2進 MDS-ID 方式を用いることで $E_b/N_0 \ge 8$ dB の環境において ウェイクアップ通信を適用できることが分かる.なお, データ通信モジュールがスリープ状態から復帰して通 信可能となるまでに要する時間1 ms は,100 ms に比 べて十分に短いために無視した.また,データ通信モ ジュールを用いた通信による遅延時間は考慮してい ない.

以上より, 2進 MDS-ID マッチングを用いることで ウェイクアップ遅延を削減できることが示された.

4.5 受信待機電力

2進 MDS-ID マッチングを用いた場合の受信待機電 力を確認するために、3 方式の平均受信待機電力の比 較を行った.図 10 に、受信待機電力のモデルを示す.

コントロールユニットに接続されているセンサノード の台数を N, ウェイクアップ受信モジュールの受信待 機電力を P_{sleep}, ウェイクアップ要求信号受信電力を P_{recv}, ID マッチング電力を P_{id}, データ通信モジュー ルの消費電力を P_{com}, 誤ウェイクアップ時のデータ通 信モジュールの受信待機時間を t_{com}, 誤ウェイクアッ プ率を p_{false}, センサノード1台の平均通信周期を T とすると, 平均受信待機電力 P_{avg} は以下の式で表さ れる.

$$P_{avg} = P_{sleep} + N(R+1)\frac{t_{send}}{T}(P_{recv} + P_{id})$$
$$+p_{false}(N-1)(R+1)\frac{t_{com}}{T}P_{com}$$
(4)

式(4)の第1項は、ウェイクアップ受信モジュール の受信待機状態における電力を表している.ウェイク アップ受信モジュールは受信待機時においてアナログ 回路のみが動作し、その消費電力は4.1で述べたよう に12.4 µW である.この電力は他の回路の動作にか かわらず常時消費される.

式(4)の第2項は、ウェイクアップ要求信号の受信 に伴う電力を表している.コントロールユニットは、 N 台のセンサノードそれぞれに対してウェイクアップ 要求信号を1周期に平均で(R+1)回送信する.各セ ンサノードは、他のセンサノード宛のウェイクアップ 要求信号を含む全てのウェイクアップ要求信号を受信 する.ウェイクアップ要求信号の受信中にセンサノー ドが消費する電力は、ウェイクアップ要求信号の受信 電力 P_{recv} と、ID マッチング回路の消費電力 P_{id} の合 計である.ウェイクアップ要求信号の受信電力 P_{recv} は4.1 で述べたように 310.3 μ W である. ID マッチ ング回路の消費電力 P_{id} については、Verilog HDL で 実装した各 ID マッチング回路を IC Compiler で評 価して取得した.ウェイクアップ要求信号の送信時間

図 11 平均受信待機電刀(ID 数 N = 10¹²,許容エラ-ビット数 t = 5)

Fig. 11 Average listening power (the number of IDs $N = 10^{12}$, the number of allowable error bits t = 5).

t_{send},再送回数*R*についてはウェイクアップ遅延と 同様の方法で算出した.

式(4)の第3項は、誤ウェイクアップ時にデータ通 信モジュールが消費する電力を表している. 各センサ ノードは他ノード宛のウェイクアップ要求信号を1周 期あたり平均で (N-1)(R+1) 回受信する. したがっ て、1 周期に平均で $p_{false}(N-1)(R+1)$ 回の誤ウェ イクアップが発生する. ウェイクアップしたセンサノー ドはデータ通信モジュールを用いてコントロールユ ニットと通信を行う. データ通信モジュールのスリー プ状態からの復帰時間と通信時間を考慮して, 誤ウェ イクアップ時のデータ通信モジュールの動作時間 tcom は1msとした. データ通信モジュール CC2520 の消 費電力 Pcom は 4.1 で述べたように 33.84 mW であ る. **4.3**の結果から, 誤ウェイクアップ率 $p_{false} = 0$ とした. 10⁻⁵ 程度の確率で発生する誤ウェイクアップ が受信待機電力に与える影響については5.3において 議論する.

車両内通信プロトコルである LIN [21] を参考に, コ ントロールユニット 1 個当りに N = 16 個のセンサ ノードが接続されている環境において, コントロール ユニットが各センサノードと平均 1s ごとに通信を行 う場合を想定した.

図 11 に, ID 数 $N = 10^{12}$,許容エラービット数 t = 5の場合の E_b/N_0 に対する平均受信待機電力を示 す.図 11 より次の三つのことが分かる.

(1) 3 方式の中で2進 MDS-ID 方式の平均受信
 待機電力が最も小さい.これは、2進 MDS-ID マッチングによりウェイクアップ要求信号の再送回数が減少

するためと考えられる.ウェイクアップ要求信号の再 送回数が減少することで、センサノードにおけるウェ イクアップ要求信号の受信電力と誤ウェイクアップ時 の電力が減少する.

(2) BCH-ID 方式は, E_b/N_0 が小さい場合には 3 方式の中で平均受信待機電力が最も大きい. これは, BCH-ID 方式の ID 長が完全一致方式や 2 進 MDS-ID 方式よりも長いためと考えられる. BCH-ID 方式も 2 進 MDS-ID 方式と同様にウェイクアップ要求信号の 再送回数を削減することができるが, 2 進 MDS-ID 方 式に比べて ID 長が長いために平均受信待機電力が大 きくなると考えられる.

(3) *E_b/N₀* に対する平均受信待機電力は,図9 に示したウェイクアップ遅延と類似した結果となって いる.これは,受信待機電力がウェイクアップ遅延に ほぼ比例するためと考えられる.ウェイクアップ遅延 が増加すると,センサノードが受信するウェイクアッ プ要求信号の数はウェイクアップ遅延にほぼ比例して 増加する.ウェイクアップ要求信号の受信及び ID マッ チングの電力が受信待機電力に占める割合は大きいた め,受信待機電力は受信するウェイクアップ要求信号 の数にほぼ比例すると考えられる.

以上より,2進 MDS-ID マッチングを用いることで 平均受信待機電力を削減できることが示された.

4.6 回路面積

2進 MDS-ID マッチング回路が小規模な回路で実 現できることを示すため、回路面積の比較を行った. Verilog HDL を用いて実装された各方式の ID マッチ ング回路を、 $0.18 \mu m$ CMOS を想定して論理合成を 行った.論理合成には IC Compiler [39] を用い、IC Compiler の出力から回路面積を取得した.

図 12 に, ID 数 N に対する各方式の ID マッチン グ回路の面積を示す.図 12 より次の四つのことが分 かる.

(1) 完全一致方式の回路面積が最も小さい.これ は、3 方式の中で完全一致方式の ID 長が最も短いた めと考えられる.

(2) BCH-ID 方式の回路面積が最も大きい.これ
 は、3 方式の中で BCH-ID 方式の ID 長が最も長いた
 めと考えられる.

(3) 完全一致方式と2進 MDS-ID 方式の回路面積は ID 数 N の対数に対してほぼ線形に増加する.これは、完全一致方式と2進 MDS-ID 方式の ID 長 n が ID 数 N の対数に対してほぼ線形の関係にあり、回路

図 12 ID 数 N に対する ID マッチング回路の面積(許 容エラービット数 t = 5)

面積が ID 長 n にほぼ比例するためと考えられる. 完 全一致方式の ID 長 n は, N 個の ID を表すことがで きる最小のビット数であることから $n = \lceil \log_2 N \rceil$ で ある. また, 2 進 MDS-ID 方式の ID 長 n は,式 (2) に示したように ID 数 N の対数の 1 次式で表される. 2 進 MDS-ID 方式では ID を生成できなかった場合 に ID 長を 1 ずつ増加させて ID の生成を行うため, 式 (2) に示した ID 長よりも長い ID 長となっている 可能性があるが,回路面積への影響は小さいものと考 えられる.

 (4) BCH-ID 方式の回路面積は ID 数 N の対数
 に対して不連続的に増加する.これは,BCH 符号を
 ID として用いるために ID 長 n が不連続の値となる
 ためと考えられる.BCH 符号を構成できる符号長 n, 最小ハミング距離 d の組み合わせには制約があるた
 め,BCH 符号を ID として用いる BCH-ID 方式では
 ID 長 n が不連続の値となる [45].

以上より,2進 MDS-ID 方式は BCH-ID 方式より 小規模な ID マッチング回路で実現できることが示さ れた.

5. 議 論

5.1 許容エラービット数と ID 長に関する議論

2進 MDS-ID 方式と BCH-ID 方式の差は主に ID 長の差によるものと推察される.2進 MDS-ID 方式と BCH-ID 方式の差を生んでいる ID 長の差を確認する ため,許容エラービット数を変化させた場合の ID 長 の評価を行った.

図 13 許容エラービット数 t に対する ID 長 (ID 数 $N = 10^{12}$)

Fig.13 ID length as a function of the number of allowable error bits t (the number of IDs $N = 10^{12}$).

図 13 に, ID 数 $N = 10^{12}$ の場合の,許容エラー ビット数 t に対する ID 長を示す.図 13 より次の三つ のことが分かる.

(1) 2進 MDS-ID 方式の ID 長は,許容エラー ビット数tに対してほぼ線形に増加している.これは, 式(1)及び式(2)が示すように,2進 MDS-ID 方式の ID 長が許容エラービット数tと線形の関係にあるため である.2進 MDS-ID 方式では ID を生成できなかっ た場合に ID 長を1bit ずつ増加させて ID の生成を行 うため,式(2)よりも長い ID 長となる場合があるが, 図 13 に示す範囲では ID 長が大きく変化することは ないといえる.

(2) BCH-ID 方式の ID 長は、許容エラービット
 数 t に対して不連続的に増加している。BCH 符号の
 符号長と最小ハミング距離の組み合わせには制約があ
 るため [45], BCH 符号を ID として用いる BCH-ID
 方式の ID 長 n は不連続的な値となる。

 (3) 許容エラービット数 t = 1 ~ 3 の範囲では,
 2 進 MDS-ID 方式と BCH-ID 方式の ID 長に大きな 差はない.

2進 MDS-ID 方式と BCH-ID 方式の ID 長がほぼ同 ーとなる許容エラービット数 $t = 1 \sim 3$ についてウェ イクアップ率,ウェイクアップ遅延,受信待機電力の 評価を行ったところ,2進 MDS-ID 方式と BCH-ID 方式に大きな差は見られなかった.2進 MDS-ID 方式 と BCH-ID 方式の性能の差は,主に ID 長の差によっ て生じていることが確認された.

2 進 MDS-ID 方式と BCH-ID 方式の ID 長がほぼ

同一となる許容エラービット数は限られているため, BCH-ID 方式は限られた範囲で有効であるといえる. BCH-ID 方式が有効となる許容エラービット数は, ID 数 N によって変化する.

5.2 ビット誤り率とウェイクアップ率に関する議論

4.2で示したウェイクアップ率がどの程度のビット 誤りと対応しているのかを確認するため,ビット誤 り率(Bit Error Rate: BER)の評価を行った. コン トロールユニットが送信したランダムなデータをセ ンサノードで受信する通信シミュレーションを行い, E_b/N_0 を変化させた場合の BER を評価した.シミュ レーションの試行回数は 400,000 回である.

図 14 に, E_b/N_0 に対する BER を示す. 図 7 の ウェイクアップ率と対比させると, ウェイクアップ率 が大きく変化する $E_b/N_0 = 6 \sim 10 \text{ dB}$ での BER は $10^{-1} \sim 10^{-2}$ 程度であることが分かる.

ここで,BER に ID 長を乗じて平均エラービット 数を算出し,図 7 のウェイクアップ率との対応を確認 する.図 13 より, ID 数 $N = 10^{12}$,許容エラービッ ト数 t = 5 の場合の ID 長は,完全一致方式で 40 bit, BCH-ID 方式で 127 bit, 2 進 MDS-ID 方式で 63 bit である.これより, $E_b/N_0 = 6$ dB における平均エ ラービット数は,完全一致方式で 2.80 bit, BCH-ID 方式で 8.89 bit, 2 進 MDS-ID 方式で 4.41 bit となる. BCH-ID 方式及び 2 進 MDS-ID 方式が 5 bit までの エラーを許容することを考慮すると,算出した平均エ ラービット数と図 7 のウェイクアップ率とは対応が取 れているといえる.

同様に, $E_b/N_0 = 8 \text{ dB}$ の場合の平均エラービット数は,完全一致方式で0.80 bit,BCH-ID方式で2.54 bit,2進MDS-ID方式で1.26 bitとなる. $E_b/N_0 = 10 \text{ dB}$

の場合には、それぞれ 0.20 bit, 0.63 bit, 0.32 bit と なる. 図 7 のウェイクアップ率と対比させると、平均 エラービット数の減少とともにウェイクアップ率が増 加することが確認できる.

5.3 誤ウェイクアップ率と受信待機電力に関する 議論

誤ウェイクアップが受信待機電力に対してどの程度 の影響を与えているかについて確認するため, 誤ウェ イクアップによって消費される電力の評価を行った. 誤ウェイクアップによって消費される電力は, 式(4) に示した平均受信待機電力のうちの第3項である. 誤 ウェイクアップ率を 10⁻⁷ ~ 10⁻³ まで変化させた場 合に, 誤ウェイクアップ電力がどのように変化するか を評価した.

図 15 に, 誤ウェイクアップ率に対する平均誤ウェ イクアップ電力を示す. ここでは例として *E_b/N*₀ =

プ遅延 $(E_b/N_0 = 8 \text{ dB}, \text{ ID } 数 N = 10^{12})$ Fig. 16 Average wake-up delay as a function of the

number of allowable error bits $t (E_b/N_0 = 8 \text{ dB}, \text{ the number of IDs } N = 10^{12}).$

4,12 dB の場合を示している. 図 11 に示した平均受信 待機電力の評価と対比させると, 誤ウェイクアップ率 が 10^{-4} 以下になると誤ウェイクアップ電力が平均受 信待機電力の 1/10 以下となることが分かる. 4.3 で 示したように, 誤ウェイクアップ率は大きくても 10^{-5} 程度であるため, 平均受信待機電力にはほとんど影響 しないといえる.

5.4 許容エラービット数とウェイクアップ遅延に 関する議論

3.1 で述べたように、2 進 MDS-ID マッチングで 使用する許容エラービット数 t の値は、通信環境の E_b/N_0 とシステムで求められる通信遅延とを考慮して 決める必要がある。許容エラービット数 t が増加する とウェイクアップ率が高くなり、再送回数が減るため にウェイクアップ遅延は小さくなる。一方で、t が増 加すると ID 長が長くなるため、1 回のウェイクアッ プ要求信号の送信時間が長くなる。このような観点か ら、許容エラービット数 t を変化させた場合のウェイ クアップ遅延の評価を行った。

図 16 に, $E_b/N_0 = 8 \text{ dB}$, ID 数 $N = 10^{12}$ の場合 の,許容エラービット数 t に対する平均ウェイクアッ プ遅延を示す.図 16 より次の二つのことが分かる.

(1) 2進 MDS-ID 方式では,許容エラービット数 tを増加させると徐々にウェイクアップ遅延が小さく なり t = 7 で最小となる.更に tを増加させるとウェ イクアップ遅延は大きくなる.t > 7 では ID 長の増加 によるウェイクアップ遅延増加が再送回数の減少によ るウェイクアップ遅延減少を上回るためと考えられる. (2) BCH-ID 方式では、2進 MDS-ID 方式と同様に許容エラービット数tを増加させると徐々にウェ イクアップ遅延が小さくなる.ただし、許容エラービッ ト数tを3から4に増加させた場合のみウェイクアッ プ遅延が大きくなっている.BCH-ID 方式では ID 長 が許容エラービット数に対して不連続的に変化するた め、ID 長が増加した場合にウェイクアップ遅延が増 加しているものと考えられる.

6. む す び

本論文では、ワイヤレスハーネスのウェイクアップ 通信の実現に向けて、最小の ID 長で ID 間の最小ハミ ング距離を保証する 2 進 MDS-ID を用い、ハミング距 離に基づいて ID マッチングを行う 2 進 MDS-ID マッ チングによる通信エラー対策を示した.シミュレー ション評価により、2 進 MDS-ID マッチングが高い通 信エラー耐性を低遅延・省電力に達成することを示し、 回路実装を行って小規模な回路により 2 進 MDS-ID マッチングを実現できることを示した.

謝辞 本研究の一部は,東京大学大規模集積システム設計教育研究センターを通し,シノプシス株式会社 及びケイデンス株式会社の協力で行われた.

献

文

- [1] 菊池典恭,畑本浩伸,奥山和典,中林昭一,清水 聡,宮下 徹,滝澤家信,"狭小かつ複雑な空間における無線通信シ ステムの MAC プロトコルに関する一検討,"信学技報, AN2010-71, Jan. 2011.
- [2] W. Ye, F. Silva, and J. Heidemann, "Ultra-low duty cycle MAC with scheduled channel polling," Proc. ACM SenSys, pp.321–334, Oct.-Nov. 2006.
- [3] E. Shih, P. Bahl, and M. Sinclair, "Wake on wireless: An event driven energy saving strategy for battery operated devices," Proc. ACM MobiCom, pp.160– 171, Sept. 2002.
- [4] E.S. Hall, D.K. Vawdrey, and C.D. Knutson, "RF rendez-blue: Reducing power and inquiry costs in Bluetooth-enabled mobile systems," Proc. Int. Conf. Computer Communications and Networks (ICCCN), pp.640–645, Oct. 2002.
- N. Mishra, K. Chebrolu, B. Raman, and A. Pathak, "Wake-on-WLAN," Proc. Int. Conf. World Wide Web (WWW), pp.1–9, May 2006.
- [6] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and R. Gupta, "Wireless wakeups revisited: Energy management for VoIP over Wi-Fi smartphones," Proc. ACM MobiSys, pp.179–191, June 2007.
- [7] N. Mishra, D. Golcha, A. Bhadauria, B. Raman, and K. Chebrolu, "S-WOW: Signature based wake-on-

WLAN," Proc. Int. Conf. Communication Systems Software and Middleware (COMSWARE), pp.1–8, Jan. 2007.

- [8] 石田繁巳,鈴木 誠,森戸 貴,森川博之,"低受信待機 電力無線通信のための多段ウェイクアップ機構,"信学技 報, IN2007-218, March 2008.
- [9] O.B. Akan, M.T. Isik, and B. Baykal, "Wireless passive sensor networks," IEEE Commun. Mag., vol.47, no.8, pp.92–99, Aug. 2009.
- [10] L. Wang, D. Zhao, and L. Ming, "An energy efficient WLAN Skype deployment using GSM wakeup signals," Proc. IEEE Int. Conf. on Green Computing and Communications & Int. Conf. on Cyber, Physical and Social Computing (GREENCOM-CPSCOM), pp.470-473, Dec. 2010.
- [11] L. Gu and J.A. Stankovic, "Radio-triggered wake-up capability for sensor networks," Proc. IEEE Real-Time and Embedded Technology Application Symp. (RTAS), pp.27–36, May 2004.
- [12] S. Mark and G. Boeck, "Ultra low power wakeup detector for sensor networks," Proc. SBMO/IEEE MTT-S Int. Microwave and Optoelectronics Conf. (IMOC), pp.865–868, Oct. 2007.
- [13] B. Doorn, W. Kavelaars, and K. Langendoen, "A prototype low-cost wakeup radio for the 868 MHz band," Int. J. Sensor Networks, vol.5, no.1, pp.22–31, Feb. 2009.
- [14] M.S. Durante and S. Mahlknecht, "An ultra low power wakeup receiver for wireless sensor nodes," Proc. Int. Conf. Sensor Technologies and Applications, pp.167–170, June 2009.
- [15] N.M. Pletcher, S. Gambini, and J. Rabaey, "A 52 µW wake-up receiver with -72 dBm sensitivity using an uncertain-IF architecture," IEEE J. Solid-State Circuits, vol.44, no.1, pp.269–280, Jan. 2009.
- [16] P. Koskela and M. Valta, "Simple wake-up radio prototype," Proc. Workshop on Hot Topics in Embedded Networked Sensors (HotEmNets), pp.1–5, June 2010.
- [17] S.J. Marinkovic and E.M. Popovici, "Nano-power wireless wake-up receiver with serial peripheral interface," IEEE J. Sel. Areas Commun., vol.29, no.8, pp.1641–1647, Sept. 2011.
- [18] S. Marinkovic and E. Popovici, "Nano-power wake-up radio circuit for wireless body area networks," Proc. IEEE Topical Conf. Biomedical Radio and Wireless Technologies, Networks, and Sensing Systems, pp.1– 4, Jan. 2011.
- [19] 石田繁巳, 瀧口貴啓, 猿渡俊介, 南 正輝, 森川博之, "ブ ルームフィルタを用いたウェイクアップ型通信システム," 信 学論(B), vol.J94-B, no.10, pp.1397-1407, Oct. 2011.
- [20] 瀧口貴啓,石田繁巳,岸 孝彦,丹羽栄二,見並一明,猿渡 俊介,森川博之,"ウェイクアップ型無線通信におけるビッ ト不一致許容 ID マッチング,"信学技報, IN2010-176, March 2011.
- [21] LIN Administration, "Local interconnect network

(LIN) specification package revision 2.1," Nov. 2006. http://www.lin-subbus.org/

- [22] C.-Y. Wan, A.T. Campbell, and L. Krishnamurthy, "PSFQ: A reliable transport protocol for wireless sensor networks," Proc. ACM Int. Workshop Wireless Sensor Networks and Applications (WSNA), pp.1–11, Sept. 2002.
- [23] F. Stann and J. Heidemann, "RMST: Reliable data transport in sensor networks," Proc. IEEE Int. Workshop Sensor Network Protocols and Applications, pp.102–112, May 2003.
- [24] H. Zhang, A. Arora, Y.-R. Choi, and M.G. Gouda, "Reliable bursty convergecast in wireless sensor networks," Proc. ACM MobiHoc, pp.266–276, May 2005.
- [25] B. Liu, F. Ren, C. Lin, and Y. Ouyang, "Performance analysis of retransmission and redundancy schemes in sensor networks," Proc. IEEE Int. Conf. Communications (ICC), pp.4407–4413, May 2008.
- [26] IEEE Standards Association, "IEEE standard for local and metropolitan area networks — specific requirements: Part 11 (IEEE 802.11-2007)," June 2007. http://standards.ieee.org/
- [27] ZigBee Alliance, "ZigBee 2007 specification," Oct. 2007. http://www.zigbee.org/
- [28] R.W. Hamming, "Error detecting and error correcting codes," Bell Syst. Tech. J., vol.29, no.2, pp.147– 160, April 1950.
- [29] R.G. Gallager, "Low-density parity-check codes," IRE Trans. Inf. Theory, vol.8, no.1, pp.21–28, April 1962.
- [30] A.J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm," IEEE Trans. Inf. Theory, vol.13, no.2, pp.260–269, April 1967.
- [31] C. Berrou, A. Glavieux, and P. Thitimajshima, "Near Shannon limit error-correcting coding and decoding: Turbo-codes (1)," Proc. IEEE Int. Conf. Communications (ICC), pp.1064–1070, May 1993.
- [32] I.S. Reed and G. Solomon, "Polynomial codes over certain finite fields," J. Society for Indust. Applied Math., vol.8, no.2, pp.300–304, June 1960.
- [33] H. Milosiu, F. Oehler, and M. Eppel, "Sub-10 μA data reception with low latency using a 180-nm CMOS wake-up receiver at 868 MHz," Proc. Semiconductor Conf. Dresden (SCD), pp.1–4, Sept. 2011.
- [34] 難波耕佑,四方博之,近藤良久,湯 素華,"ウェイクアッ プ受信機を用いた Radio-On-Demand Networks のた めの ID 設計に関する一検討,"信学技報,NS2010-187, March 2011.
- [35] R.C. Singleton, "Maximum distance Q-Nary codes," IEEE Trans. Inf. Theory, vol.10, no.2, pp.116–118, April 1964.
- [36] S.W. Golomb and L.D. Baumert, "Backtrack programming," J. ACM, vol.12, no.4, pp.516–524, Oct. 1965.

- [37] J.R. Bitner and E.M. Reingold, "Backtrack programming techniques," Commun. ACM, vol.18, no.11, pp.651–656, Nov. 1975.
- [38] P. Purdom and C. Brown, "An average time analysis of backtracking," SIAM J. Computing, vol.10, no.3, pp.583–593, Sept. 1981.
- [39] Synopsys, "IC Compiler: The next-generation physical design system." http://www.synopsys.com/
- [40] Texas Instruments, "CC2520: Second generation 2.4 GHz ZigBee/IEEE 802.15.4 RF transceiver," datasheet. http://www.ti.com/
- [41] 北沢祥一,大平昌敬,馬場隆行,伴 弘司,上羽正純, "ICT 機器内の狭空間における電波伝搬の解明,"信学技 報, AP2010-32, June 2010.
- [42] M. Ohira, T. Umaba, S. Kitazawa, H. Ban, and M. Ueba, "Experimental characterization of microwave radio propagation in ICT equipment for wireless harness communications," IEEE Trans. Antennas Propag., vol.59, no.12, pp.4757–4765, Dec. 2011.
- [43] 岡 智広,北沢祥一,中本成洋,阿野 進,伴 弘司,上羽 正純,"ICT 機器内の動的雑音・干渉特性及び通信用アン テナ特性の評価,"2010 信学ソ大(通信), B-1-47, Sept. 2010.
- [44] 馬場隆行,北沢祥一,大平昌敬,伴 弘司,上羽正純,"狭 小かつ複雑な空間における無線通信のための方式設計,"
 2010 信学総大, B-5-182, March 2010.
- [45] R.C. Bose and D.K. Ray-Chaudhuri, "On a class of error correcting binary group codes," Info. Control, vol.3, no.1, pp.68–79, March 1960.

(平成 24 年 8 月 15 日受付, 25 年 1 月 3 日再受付)

石田 繁巳 (学生員)

平 18 芝浦工大・工卒. 平 20 東大・新領 域修士了. 平 20~21(株) アクティス勤 務. 執筆等時,東大・工・博士課程. 無線 センサネットワーク,省電力無線通信に関 する研究に従事. IEEE 会員. 日本学術振 興会特別研究員.

瀧口 貴啓

平 21 東大・工・電子情報卒. 平 23 東大 大学院工・電気系工修士了.研究当時,東 大・工・電気系工修士課程. 省電力無線通 信に関する研究に従事.

猿渡 俊介 (正員)

平14 電通大・情報工卒. 平16 東大大学 院新領域修士了. 平19 同大・新領域博士 了. 科博. 平18~20 学振特別研究員, 平 19~20 イリノイ大学客員研究員, 平20~ 22 東大・先端研・助教. 現在, 静岡大・情 報学・助教. 無線センサネットワークの研

究に従事.本会論文賞受賞.ACM, IEEE, 情報処理学会各 会員.

森川 博之 (正員:フェロー)

昭 62 東大・工・電子卒. 平 4 同大大学 院博士課程了.現在,同大学・先端科学技 術研究センター・教授.工博.ユビキタス ネットワーク,センサネットワーク,無線 通信システム,モバイルコンピューティン グ.フォトニックインターネット等の研究

に従事.本会論文賞(3回),情報処理学会論文賞,ドコモモバ イルサイエンス賞,志田林三郎賞,情報通信功績賞等受賞.本 会総務理事,編集理事,東京支部長,通ソ英文論文誌編集長, IN/USN/SRW 研究専門委員会委員長等歴任.