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Power conservation has become a serious concern during people’s daily life.
Ubiquitous computing technologies clearly provide a potential way to help us
realizing a more environment-friendly lifestyle. In this paper, we propose a
ubiquitous power management system called Gynapse, which uses multi-modal
sensors to predict the exact usage of each device, and then switches their power
modes based on predicted usage to maximize the total energy saving under the
constraint of user required response time. We build a three-level Hierarchical
Hidden Markov Model (HHMM) to represent and learn the device level usage
patterns from multi-modal sensors. Based on the learned HHMM, we develop
our predictive mechanism in Dynamic Bayesian Network (DBN) scheme to pre-
cisely predict the usage of each device, with user required response time under
consideration. Based on the predicted usage, we follow a four-step process to
balance the total energy saving and response time of devices by switching their
power modes accordingly. We use PlaceLab data set to evaluate Gynapse, and
the preliminary results demonstrate that Gynapse has the capability to reduce
power consumption while keeping the response time not exceed user require-
ment, which provides a complementary approach to previous power manage-
ment systems.

1. Introduction

Rising global energy demands, increasing costs and limitations on natural re-

sources have raised the concerns about energy conservation. As reported by

Japanese government1), the energy consumption in Residential & Commercial

sector has increased 40% since 1990, among which the most consumed energy is

electricity by various home electronic devices2). Ubiquitous computing technolo-

gies provide the potential to reduce power consumption. For instance, the lights,
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heating and other devices all sit on a ubiquitous in-house network. Lights can

be automatically controlled by sensors that measure the brightness in the room,

and they will switch off altogether if no one is in the room. The temperature

of the living room air conditioning or floor heating will change according to the

number of people in the room. We can also check if the house is carbon neutral

by seeing how much power is generating from solar panels and how much is used.

In this paper, we will discuss the power saving potential of ubiquitous computing

technologies in an indoor environment.

People have tried a lot of methods to reduce power consumption in indoor

environments. The most common way is replacing with energy efficient devices.

However, replacement cannot solve all the problems. For instance, even if the

resident replaces a 60W bulb with a 30W energy efficient one, it will still waste a

lot of energy if he leaves the bulb ON for 24h/7d. To eliminate such waste, people

try an alternative way to switch lights off or turn devices into low power mode

when not in use3), which we call “power mode switching” indistinctly herein.

This method has drawn special attention from researchers of ubiquitous com-

puting, and shown promising results4)–11). These systems try to automatically

switch power modes of devices with sensors and controllers installed in indoor

environments. We will follow their researches and focus on “ubiquitous power

mode switching” systems in this paper.

According to our research, we believe the following requirements are important

for a practically effective power mode switching system:

• A system should have the capability to adaptively handle multiple devices

for complicated human behaviors in different situations. Because of the com-

plexity of human behavior, a resident usually uses different combinations of

devices in different situations. Therefore, it is natural to require a system

to be able to adaptively coordinate the power mode switching of multiple

devices for complicated behaviors in different situations.

• The system should have the capability to precisely predict the exact usage

of each device. The key of power mode switching is to proactively determine

the future usage of a device, and switch its power mode accordingly. Hence,

precise usage prediction is crucial for such a system. In addition, since we

can only switch power mode of each device, the usage prediction should also
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be at device level. As a result, a system must be able to precisely predict the

usage at device level.

• The system should have the capability to balance the response time of devices

and their total energy saving. For instance, although a PC can save energy in

sleeping mode, the resident may feel frustration with its long wake-up time.

Therefore, a system must be able to save energy while keeping the response

time short enough.

Previous power mode switching systems4)–11) usually make power mode switch-

ing according to pre-defined “rules” or the resident’s locations. Although they

successfully meet one or two requirements above, none of them can fulfill all three

requirements. In this paper, we propose a ubiquitous power management system

called Gynapse, which uses multi-modal sensors to predict the exact usage of

each device, and then switches their power modes based on predicted usage to

maximize the total energy saving under the constraint of user required response

time. To our best knowledge, it is the first system that fulfills all the requirements

above. Gynapse consists of three important components:

• A probabilistic model to learn residents’ usage patterns at device level from

multi-modal sensors. We build a three-level Hierarchical Hidden Markov

Model (HHMM)12) to represent multiple residents and their device usage,

and use Forwards-Backwards (FB) and Expectation-Maximization (EM) al-

gorithms13) to learn the parameters. The sensor data, such as RFID reading

from keyboard and current data from power lines, are arranged as vectors

to train HHMM. This model provides the capability to adaptively handle

multiple devices for complicated behaviors in different situations.

• A predictive mechanism to forecast the usage probability of multiple devices

in the future. Based on the learned three-level HHMM, we introduce two vari-

able to represent device’s wake-up time and user’s required response time, and

develop our predictive mechanism in Dynamic Bayesian Network (DBN)14)

scheme. This mechanism provides the capability to precisely predict the

usage of each device, and also takes the response time into consideration.

• A control framework to maximize the energy saving under the constraint of

user required response time. With the predicted usage probability of each

device, we follow a four-step process to calculate the total probability and

energy saving of devices, and switch their power modes according to the

scenario with the highest energy saving and probability. This framework

puts everything together and balances the response time of devices and their

total energy saving.

To conduct our analysis, we use sensor data from MIT PlaceLab15) to imple-

ment and evaluate Gynapse. We totally obtain 24 days of data, within which we

use 9 days to train the three-level HHMM, and 14 days to verify the system. Af-

ter learning the parameters of our probabilistic model, the predictive mechanism

correctly predicts the device usage for about 90%. Based on the usage prediction,

the control framework successfully balances the response time and energy saving,

and achieves an average 11% power saving of 14 days.

The succeeding sections of this paper are organized as follows: Section 2 reviews

the previous researches on power mode switching systems. Section 3 analyzes

the technical problems we are going to solve. Section 4 describes the design of

Gynapse. In section 5, we evaluate our system with PlaceLab data and discuss

the preliminary results. Section 6 concludes the paper finally.

2. Related Works

In this section, we will review the previous power mode switching systems

according to the three requirements mentioned in section 1.

The most straightforward way of power mode switching is automatic power-

off based on pre-defined “rules”. Such systems use infrared or motion sensors

to detect the existence/absence of residents, and then turn on/off the lights or

air-conditioners through Home Energy Management System (HEMS)4),5). Their

motivation is the simplicity to build a rule, such as “If no user in the room for

a time-out period, then turn off the lights.” However, the human behaviors are

so complicated that cannot be completely described with such simple rules, e.g.,

if one sits still in a chair when reading, the lights may be incorrectly turned off

after a motion time-out period. Additionally, as the number of rules increases,

it may become difficult to coordinate rules in different situations. For instance,

one rule may say “If no user sits in front of TV for a time-out period, then turn

off TV”; whereas, another rule may say “If the user is cooking in kitchen, then

turn on TV”, because he usually watches it when cooking. To eliminate such
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conflicts, people have to define complex rules to describe the situations, which

digress from the original standpoint of simplicity. As a result, such “rule-based

switching” systems do not fulfill the first requirement, since they cannot properly

handle multiple devices for complicated human behaviors in different situations.

To solve the problems of “rule-based switching” systems, researchers have tried

probabilistic models for more efficient power management. The first work is

Neural Network House6),7), which builds a neural network to predict the mobility

of residents between different “lighting zones”, and switch the power setting of

lights accordingly. A similar work is MavHome project8), which predicts the

resident’s location together with his most likely path based on an information-

theoretical framework, and pro-actively switches the power mode of devices along

this future route. Harris and Cahill9),10) introduce the concept of context-aware

power management, and concentrate on switching power modes of a desktop PC

according to predicted usage. They build a Dynamic Bayesian Network (DBN)

for usage prediction based on user’s proximity to PC. Although people argue

that probabilistic prediction rarely achieve 100% accuracy, it can be improved

by integrating high-level information, such as user feedback16)–18).

A more serious drawback of previous probabilistic power mode switching sys-

tems is they are all based on the prediction of resident’s coarse-grained location

instead of each device’s exact usage. Therefore, they leave two problems unsolved:

1) they imply the device location is fixed, so they can predict usage based on res-

ident’s proximity (location) to device. However, for devices such as TV, which

are controlled via remote, proximity does not work. Furthermore, they cannot

predict proximity to remote, because it is movable. 2) They only discuss the

situation that one (kind of) device at one coarse-grained location, such as the

light in a room. However, it is not unusual that a TV, a DVD player and a light

are in the same room. In this case, previous works cannot decide which device

to use, even if they can predict the resident will enter this room. Therefore,

such “coarse-grained location-based switching” systems do not fulfill the second

requirement, because they cannot predict the exact usage of each device.

People may argue that we can solve the preceding problems, if we have a highly

fine-grained location system that pinpoints every device no matter movable or

not. Unfortunately, no such systems exist at current stage. However, researchers

of activity recognition provide an alternative way to model the device level usage

by using multi-modal sensors. In 19), 20), they attach RFID tags to devices

such as TV remote and washer, and build probabilistic models such as Hidden

Markov Model (HMM) or Dynamic Bayesian Network (DBN) to infer the activ-

ities in which the devices are used. 15), 21) use more multi-modal sensors to

recognize activities in addition to RFID tags. However, since the objective of

these researches is to infer what activity it is given the observed sensor data, not

predict the activity and device usage in the future, they do not fulfill the second

requirement too.

As we are aware, no existing power mode switching system is based on the usage

prediction at device level. In this paper, we try to build such a system by using

multi-modal sensors, since it is more realistic than a fine-grained location-based

system. We must make it clear that our system is complementary rather than

competitive to previous coarse-grained location-based systems. On one hand, we

can use them jointly to increase accuracy. For example, we can predict the room

to enter from location system, and predict the device to use from multi-modal

sensors. On the other hand, we can use device level prediction independently.

For instance, no matter a resident’s location is in living room or kitchen, we can

always capture his usage of TV from RFID tag attached to the remote. In this

paper, we will learn and forecast the exact usage of each device from multi-modal

sensors, and switch their power modes based on the usage prediction at device

level.

The third requirement comes from a major frustration of previous power mode

switching systems, which is the users have to wait for a long wake-up time before

using a device11),22). To solve this problem, Harle and Hopper11) classify the

electronic devices into three “wake-up time” categories, and optimize their power

mode switching based on a location-aware system in an office building. However,

they have the same problem as other location-based power management systems,

and cannot address the problem such as remote-controlled devices or multiple

devices at the same location.

From the discussion above, we can find that no previous systems fulfill all

three requirements. To complement the previous researches, we propose Gynapse,

which uses multi-modal sensors to predict the exact usage of each device, and then
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switches their power modes based on predicted usage to maximize the total energy

saving under the constraint of user required response time. In the following

section, we will analyze the technical problems need to be solved by Gynapse.

3. Problem Statements

As we explained in section 1, three components are important for Gynapse:

1) a probabilistic model to learn residents’ usage patterns at device level, 2) a

predictive mechanism to forecast the usage probability of multiple devices in the

future, 3) a control framework to maximize energy saving under the constraint

of user required response time. We will analyze the technical challenges of each

component, and formulate the problems we are going to solve.

3.1 Challenges for Probabilistic Model

The main challenge for probabilistic model derives from the fact that hierarchi-

cal structure exists in human behaviors23),24). For instance, during a high level

activity such as “make breakfast”, the resident may repeat low level actions⋆1,

such as “use coffee maker” and “use toaster”; or during the activity of “work in

office”, he may repeat actions of “use PC” and “use lamp”. Hence, if the resident

is “using coffee maker”, it is more possible for him to “use toaster” rather than

“use PC” for the next step. This kind of sequences (or transitions) of actions

and activities are actually the “patterns” of resident’s device usage. To learn

them, the probabilistic model must properly represent the hierarchical structure

in human behaviors and the transitions between actions and activities.

Another challenge is multiple residents in one family. Although one-person

family will become the largest single category in Japan by 2010 with a percent-

age of 31.2%, multi-person family will still be the mainstream⋆2. Therefore,

probabilistic model need another hierarchy to represent the status of residents.

3.2 Challenges for Predictive Mechanism

After learning the usage patterns, we can predict the usage probability of multi-

⋆1 For clarity, we define resident’s direct interaction with a device as a low level “action”, and
define his goal of a sequence of actions as a high level “activity”.

⋆2 As projected by the National Institute of Population and Social Security Research, because
of the falling birthrate and the aging population, the family structure in Japan will have
influential change by 2010: 31.2% will be single live, 20.1% will be only husband and wife,
27.9% for parents and kids, 9% for single-parent and kids, and 11.8% for others25).
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ple devices in the future. There are three challenges for the predictive mechanism.

The first one is it must be able to handle different wake-up times. Figure 1 de-

picts an example. Two devices have different wake-up times, TWU,1 and TWU,2,

respectively. If both of them are awoken at time t, they can only be used after

t1=t + TWU,1 and t2=t + TWU,2, respectively. Therefore, if a system wants to

make wake-up decisions at time t, it has to predict the usage probability of de-

vice 1 at time t1, and that of device 2 at time t2, which is defined as wake-up

probability of device i at time t, pt,i.

The second challenge for predictive mechanism is it must consider an acceptable

response time ⋆3 for the resident. An example is illustrated in Fig. 2. A service

request comes at time T . If the device is awoken at that time, the resident cannot

use it until T2=T + TWU . However, if the resident restricts the response time no

more than TRS=T
′

2 − T , then the device must be awoken at least T
′

1, which is

(TWU − TRS) before the service request at T ⋆4. As a result, if we want to make

a wake-up decision at T
′

1 like t in Fig. 1, the wake-up probability pT ′
1
is actually

the device usage probability at T
′

1 + (TWU − TRS) instead of T
′

1 + TWU .

The third challenge is improving the accuracy of prediction. Because the pre-

dicting algorithm itself rarely achieve 100% accuracy, some high-level information

should be integrated to improve it.

3.3 Challenges for Control Framework

After predicting the wake-up probability of devices, we can control power mode

⋆3 Response time is defined as the duration between a service is requested and a device is
ready to provide it, such as T2 − T or T

′
2 − T in Fig. 2

⋆4 The practical upper limit of TRS is TWU , since the user will not accept a device to response
longer than its wake-up time.
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switching to maximize the total energy saving under the constraint of user re-

quired response time. As explained in section 3.2, the user required response

time, TRS , has been considered when predicting wake-up probability pT ′
1
. If this

probability is less than 0.5, which means the device should not be awoken at T
′

1,

then the device has to postpone its wake-up, and the response time will exceed

user’s requirement TRS . Therefore, the restriction that the response time should

not exceed TRS actually becomes that the wake-up probability pT ′
1
should not

fall below 0.5. As a result, the challenge for control framework becomes choos-

ing a combination of devices that will save maximum energy after power mode

switching, under the constraint that the wake-up probability of this combination

is higher than a threshold.

4. Design of Gynapse

To solve the challenges in section 3, we design a system called Gynapse, which

learns and predicts the exact usage of each device, and then switches their power

modes accordingly to maximize the total energy saving under the constraint

of user required response time. A simplified example of Gynapse is shown in

Fig. 3⋆1.

We obtain power status of PC, light, tea-maker, and microwave from current

sensors, which are denoted as WK/LP for working/low power modes. Obviously,

power consumption depends on device usage, which is closely correlated with

sensors, such as RFID tag on microwave or Object Movement (OM) sensor on

tea-maker (circles in Fig. 3). Therefore, we can infer the resident’s activities and

device usages from multi-modal sensors. As shown in Fig. 3, after using PC in

office, the resident enters kitchen and turns on light at 20; then he heats water

with tea-maker and warms food with microwave at 25 and 35 respectively; at 80,

he leaves kitchen and works on PC again. With this analysis, we know the PC is

not used from 20 to 80, so it could be switched into low power mode for saving

energy (shaded bar in Fig. 3).

To achieve this goal, we must proactively switch power mode of PC according

to its predicted usage: if we predict the user will head for kitchen to make a

⋆1 We rescale time line and ignore details of sensor data that will not detract our discussion.
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Fig. 3 An example of Gynapse
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snack, we shall turn PC into low power mode; if we predict he will return to

work, we shall turn PC into working mode. Therefore, we need a functional part

in Gynapse to predict device usage. Another consideration is, the user may feel

frustration because the long wake-up time of PC. Therefore, we need a functional

part in Gynapse to take response time into consideration.

With these considerations, we design Gynapse’s architecture as in Fig. 4. We

assume a user interface (UI), sensor and control infrastructure exists in an in-

door ubiquitous computing environment, which could be used to collect user

feedback, detect human activities and switch power mode of devices. Gynapse

consists of one adjunct database of device information, and three functional parts:

Data Aggregator, Forecaster, and Controller. Solid arrows are main data flows.

Data Aggregator receives information from different types of sensors/devices (ar-

row 1), normalizes their values, and builds them into a time series of vectors

O⃗t =
(
s1t , s

2
t , . . . , s

M
t

)
, where M is the number of sensors and t denotes time.

After receiving these vectors (arrow 2), Forecaster builds a three-level Hierar-

chical Hidden Markov Model (HHMM) to learn the usage pattern of devices,

and forecast their usage probabilities through the predictive mechanism. With

the predicted probabilities (arrow 3), Controller makes decisions of power mode

switching to maximize the total power saving under response time constraint.

These decisions (arrow 4) are then sent to the ubiquitous computing infrastruc-

ture to switch devices. If Gynapse makes any wrong decisions, user feedback can

be obtained through user interface. The adjunct database provides the necessary

information of current status (S), wake-up time (TWU ), and power saving (E) of

each device.
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In the following sections, we will discuss the details of probabilistic model and

predictive mechanism in Forecaster, and control framework in Controller.

4.1 The Probabilistic Model

Before predicting the usage probability of devices, Forecaster must build a

probabilistic model to learn the usage patterns of them. We use a three-level

Hierarchical Hidden Markov Model (HHMM) to represent and learn residents

status and device usages, because its hierarchical nature easily characterizes nat-

ural hierarchies in human activity and allows for model reusability and more

efficient learning12),26). Our contribution here is applying HHMM to model the

device usage in a power management system, instead of developing a new exten-

sion of HHMM. Therefore, we focus on explaining the model of single resident

and its generalization to multiple residents, rather than discussing the details of

learning algorithms.

Figure 5 illustrates a model, whose left part with numbered arrows corre-

sponds to our example in Fig. 3. Five different types of nodes are in this model:

R, I, P , E, and O. The R node at the first level is Root state representing

the status of residents at home. For single resident, it is state (1) if he is at

home, otherwise it is state (0). The I nodes at the second level are Internal

states, which represent activities of the resident, such as “make snack”, or “work

in office”. They may have an arbitrary number of P nodes. The P nodes at

the third level are Production states, which represent the device status, such as

“Tea-maker (TM) is in use”, or “microwave (MW) is not in use”. Production

state is the only one within HHMM that can emit observations, O nodes, which

are the vectors sent by Data Aggregator. The E nodes are End states, which

exist only to signal the horizontal transition is ended, and a vertical transition

to upper level is needed.

Arrows between nodes represent probabilistic dependencies: solid arrows are

transitions between hidden states of HHMM, and dotted line arrows are depen-

dencies between Production states and observations. There are two kinds of state

transitions: 1) horizontal transition at the same level, which means the resident

is going to use another device or to another activity; 2) vertical transition be-

tween different levels, which means the resident start or finish using devices in

an activity. For instance, the resident “turns off light” after “using microwave”

Activity Activity
ActivityWork in 

office
Make snack I I E

P E EPP

I I I

EP EP P EPP

O O O O O O O OObservations

Third Level

Second Level

First Level

1

4

3

2

PCLight

7

8

9

10

11

R

MW

I

P EP

O O

P

O

Activity

5

6

TM

Fig. 5 State transition diagram of three-level HHMM. Shaded nodes are observed; the remain-
ing nodes are hidden. The numbered arrows show the sequence of state transitions.

(7), a transition to End state (8) means he has finished “making snack” and

a transition back to the second level (9) is needed. Then he goes to “work in

office” and “use PC”, which are represented by transition (10) and (11). This

model clearly represents the hierarchical structure in human behaviors and the

transitions between device usages and activities.

When multiple residents are at home, it becomes a little more complex. If

they always do the same activities, such as “watch TV” together, it will not be

a problem. If they do different activities at the same time, we have to represent

them separately in the model. As explained before, R node represents the status

of residents at home. If there are two people, we add one dimension to R node,

so the state (1,1) represent both of them are at home. It is the same for I and P

nodes. For instance, one state of I node will become (make snack, watch TV) to

represent their activities respectively. Of course, as the dimension increases, the

number of state will also increase. Fortunately, it will not increase exponentially,

because the residents in a family tend to do the same activity for most of the

time, such as “have dinner” or “watch TV” together.

After solving the representation challenges in section 3.1, we now focus on

learning usage patterns, which is actually learning the probabilistic dependen-

cies: horizontal transition probabilities, vertical transition probabilities, and ob-

servation probabilities. We follow the notation in 12) to define them. The Root,

Internal, Production and End states in Fig. 5 are uniformly represented by qdi ,

where d ∈ [1, 2, 3] denotes the hierarchy level and i is the state index relative to

its parent. E.g., q2i means an Internal state at the second level. The probability

of state qd−1 vertically transitioning to its children qdi is specified as πqd−1

(qdi ).
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The probability of state qdi making a horizontal transition to state qdj is written

as aq
d

ij . Hence, for Root and each Internal state, vertical and horizontal transi-

tion probabilities are defined as the vector Πqd and the matrix Aqd respectively.

Production states at the third level q3 are the only type can emit observations.

Therefore, the observation probabilities of Production nodes is represented as the

vector Bq3 , which defines the probability of state q3 producing observation O = k

as bq
3

(k) = P
(
O = k|q3

)
⋆1. The model parameters are denoted in a compact

form as λ = (A,B,Π).

We use the forwards-backwards and expectation-maximization algorithms in

13) to learn the parameters from historical data, which reduces the time com-

plexity to O(T ), compared with O(T 3) in the original paper of 12). The learned

parameters λ = (A,B,Π) are used to predict the probability of device usage via

the predictive mechanism.

4.2 The Predictive Mechanism

After learning the usage patterns, Forecaster predicts the usage of multiple

devices in future through the predictive mechanism. In order to show the tem-

poral relationship more clearly, we redraw the three-level HHMM as a Dynamic

Bayesian Network (DBN)13),14) in Fig. 6, which is identical to the state transition

diagram in Fig. 5. Although Fig. 5 emphases the parent-children relationship

between states, Fig. 6 highlights the temporal sequence of them.

Figure 6 shows the three-level HHMM as time slices. At time slice t, the

observation is O⃗t =
(
s1t , s

2
t , . . . , s

M
t

)
; the state at level d is denoted as Qd

t , so the

Root, Internal, and Production states are Q1
t , Q

2
t , and Q3

t respectively. F d
t is a

binary indicator that is 1 if it has entered an End state; otherwise it is 0. The

downward arrows between the Q variables represent a state “calls” its children.

The upward arrows between the F variables enforce the fact that a higher-level

state can only change when lower-level one is finished.

The example in Fig. 5 is also shown in Fig. 6. Suppose at t = 1, Q1
1 represents

the resident is at home, Q2
1 represents he is “making snack”, and Q3

1 represents

he is “using microwave”. Then at t = 2, Q1
2 and Q2

2 keep unchanged, while Q3
2

⋆1 This can be considered as if q3 is in the state “using PC”, then we can observe reading
from RFID tag on keyboard.
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Fig. 6 Dynamic Bayesian Network of three-level HHMM. Shaded nodes are observed; the
remaining nodes are hidden. Qd

t is the state at time t, level d; F d
t = 1 if the HHMM

at level d has finished (entered its end state), otherwise F d
t = 0.

changes its state to “turn off light”. Since it is the end of “make snack”, F 3
2

becomes 1, which means it has finished and Q2
2 can change state for the next

time slice. At t = 3, Q1
3 is still unchanged, Q2

3 changes to “work in office”, and

Q3
3 changes to “use PC”.

Given the learned parameters λ = (A,B,Π) in section 4.1, we first explain how

to predict the states at the next one time slice, and then generalize to next N

time slices.

Suppose we are at t−1, and know the states Qd
t−1 and F d

t−1, where d ∈ [1, 2, 3].

We try to predict the states at t, Qd
t and F d

t . We explain the Production, Internal

and Root states separately.

Production state (the third level): Production state Q3
t follows a Markov

chain with parameters determined by higher-level states Q1:2
t , which we denote

as k for brevity.

If Q3
t−1 does not enter an End state, the value of Q3

t should be drawn from

horizontal transition probability A. Otherwise, it turns F 3
t−1 to be 1 to signal

it is finished, and draws the value of Q3
t from vertical transition probability Π.

Formally, we can write the probability that Q3
t will be in state j as follows:

P
(
Q3

t = j|Q3
t−1 = i, F 3

t−1 = f,Q1:2
t = k

)
=

{
aq

3

ij if f = 0

πq2(q3j ) if f = 1
(1)

where aq
3

ij and πq2(q3j ) are the horizontal and vertical transition probabilities

explained in section 4.1. For clarity, i, j ̸= End state here, because the End state
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is indicated with F 3
t as:

P
(
F 3
t = 1|Q1:2

t = k,Q3
t = i

)
= aq

3

i,end (2)

Internal state (the second level): Similar to Production state, Internal

state Q2
t follows a Markov chain with parameters determined by Q1

t , and F 2
t−1

specifies whether we should use the horizontal or vertical transition probability.

The difference is that we now also get a signal from lower-level F 3
t−1: if it has

finished, we are free to change Internal state, otherwise we must remain in the

same state. Formally, we can write the probability that Q2
t is in state j as:

P
(
Q2

t = j|Q2
t−1 = i, F 3

t−1 = b, F 2
t−1 = f,Q1

t = k
)
=


δ(i, j) b = 0

aq
2

ij b = 1 and f = 0

πq1(q2j ) b = 1 and f = 1
(3)

where δ(i, j) = 1 if i = j, otherwise δ(i, j) = 0. F 2
t should turn to 1 only if Q2

t is

“allowed” to enter an End state. Formally, we can write this as follows:

P
(
F 2
t = 1|Q1

t = k,Q2
t = i, F 3

t = b
)
=

{
0 if b = 0

aq
2

i,end if b = 1
(4)

Root state (the first level): The Root state Q1
t differs from Internal states

in that it has not parent to specify which distribution to use. The equations are

the same as above, except we eliminate the conditioning on Q1
t = k.

Following Eq. (1) – (4), we can obtain the probabilities of each state at t,

P (Qd
t ) and P (F d

t ), given the parameters λ = (A,B,Π) and the states Qd
t−1 and

F d
t−1. Now we generalize it to next N time slices.

As explained in section 3.2, we must consider wake-up time TWU and user

required response time TRS for predicting. Suppose we are at time T , and need

predict the probability of device usage at T+(TWU−TRS). Suppose (TWU−TRS)

is equal to the length of 2 time slices⋆1, so our problem becomes predicting the

probability of Qd
T+2, given the current states Qd

T . We follow Eq. (1) – (4) to

obtain the probability of Qd
T+1 at first, and then re-use Eq. (1) – (4) to calculate

the probability of Qd
T+2 based on Qd

T+1. For devices with different (TWU −TRS),

we need repeat this process for different times.

⋆1 For simplicity, we use discrete time Markov chain here, so (TWU − TRS) is equal to an
integer number of time slices.

The third challenge discussed in section 3.2 is the accuracy of prediction. For

instance, Forecaster predicts the resident will “work in office” after “making

snack”, whereas he may actually go to “watch TV”. Essentially, it is impossible to

completely eliminate the incorrect prediction. However, we believe the possibility

still exists to improve Gynapse’s accuracy. A potent candidate is integrating

user feedback with predictive mechanism. As shown in 16), 17), the accuracy

can be improved by introducing high-level information, such as user feedback.

It actually involves two separate problems: the first is soliciting feedback from

user. This one has been intensively studied by researchers of computer-human

interface, such as explicit feedback from mobile touch screens27),28) or implicit

feedback from sensor networks29),30). With this kind of technologies, we can easily

obtain feedback from users. The second and key problem is integrating feedback

with learning and predicting mechanism in Forecaster. The general approaches

are: 1) treating user feedback as hard constraints to Bayesian Network’s learning

algorithms18),31),32), or 2) incorporating them in the prior knowledge33). Since

the correctness of the learned model obviously depends on the training samples,

we use a training sample selection method similar to 18). Suppose we obtain one

feedback to indicate the “make snack→watch TV” transition is correct, while

“make snack→work in office” is incorrect. We replace one set of observation

vectors that represent “make snack→work in office”, with one set representing

“make snack→watch TV” in training samples; we will replace two sets if we get

two feedbacks. As a result, we punish the wrong prediction and reward the user’s

correction, so we can gradually improve prediction accuracy when we re-learn the

model parameters from new training samples.

In this way, we have solved all the challenges in section 3.2. At last, we send

the predicted probabilities of Production states to Controller, since they are the

wake-up probabilities of devices.

4.3 The Control Framework

After receiving the predicted wake-up probabilities, Controller switching power

mode of multiple devices to maximize the total energy saving under the constraint

of user required response time. As explained in section 3.3, since the user required

response time TRS has been considered in predicted wake-up probabilities, the

problem actually becomes choosing a scenario that will save the maximum energy
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after power mode switching, under the constraint that the wake-up probability

of that scenario is higher than a threshold. Four steps are necessary.

The first step is to calculate the predicted probability of all scenarios. We

use Ii to indicates the usage of device i, where Ii = 1 if it is awoken to working

mode, and 0 if it is keeping in low power mode. Hence, the predicted probability

of device i can be written as:

Pi(Ii) =

{
pi Ii = 1

1− pi Ii = 0
where pi is the wake-up probability received from Forecaster.

If we totally have N devices, the predicted scenario can be represented as

(I1, I2, . . . , IN ), and its probability is:

P (I1, I2, . . . , IN ) =
∏

1≤i≤N

Pi(Ii) (5)

As explained in section 3.3, we choose scenarios whose probability is higher

than 0.5N as the “possible” pool. We use a pool of scenarios instead of the top

one is because the actual scenario more likely falls into a high probability pool,

rather than exactly matches the top 1 predicted scenario⋆1. At the same time, we

also narrow down the number of scenarios that need to be processed at following

steps.

The second step is to calculate the energy saving of selected scenarios. We

use ei to represent the energy saving of device i, which is the difference of energy

consumption between working and low power modes. Then the energy saving of

scenario (I1, I2, . . . , IN ) is:

ES(I1, I2, . . . , IN ) =
∑

1≤i≤N

ei ∗ (1− Ii)

which means device i can save energy when it is in low power mode (Ii = 0). To

⋆1 We can consider a following example: Suppose we predict the top 1 scenario is S1. If
our prediction is perfect, the actual scenario must match S1. However, since no existing
algorithms can achieve 100% accuracy, there must be some actual scenarios mismatch the
top 1 prediction. Now we consider an “extreme” pool, which includes ALL the possible
scenarios. In this case, the actual scenario must fall in this pool with 100% accuracy.
This phenomenon has been broadly observed across predicting algorithms. Some numerical
results can be found in 34), 35), where the top 4 or 5 prediction always achieve higher
accuracy than the top 1 prediction.

make it comparable, we normalize the energy saving as:

ẼS(I1, I2, . . . , IN ) =
ES(I1, I2, . . . , IN )∑

1≤i≤N

ei ∗ 1
= 1−

∑
1≤i≤N

ei ∗ Ii∑
1≤i≤N

ei ∗ 1
(6)

The third step is to calculate the product of energy saving and predicted

probability for the selected pool. The product of scenario (I1, I2, . . . , IN ) can be

calculated by multiplying Eq. (5) and Eq. (6) as:

U(I1, I2, . . . , IN ) = ẼS(I1, I2, . . . , IN ) ∗ (1 + P (I1, I2, . . . , IN )) (7)

We choose the scenario with the maximum product as the “ideal” one, be-

cause it has both high probability and large energy saving. The “1” in Eq. (7)

guarantees that we first compare energy saving of scenarios; if energy saving are

equal, then we compare their probability. In this way, we choose a scenario that

maximizes the total energy saving and its wake-up probability is higher than the

threshold of 0.5N , and solve the challenge in section 3.3.

At the last step, the current scenario is compared with the “ideal” one,

and decisions of power mode switching are sent to the ubiquitous computing

environments for execution.

After learning the usage patterns from historical data, Gynapse repeats pre-

diction and these four steps every time slice. In this way, it can handle power

mode switching to maximize the total power saving while ensuring that response

time does not exceed the required level.

5. Implementation and Evaluation

In this section, we shall discuss the details of implementation and evaluation

of Gynapse. We first describe the data and environment of our experiments, and

then discuss the preliminary results.

5.1 Experimental Environment

We use sensor data from MIT PlaceLab15) to evaluate our system. PlaceLab

is a 1000 sq. ft. apartment consisting of a living room, dining area, kitchen,

small office, bedroom, full bath and half bath. 15 types of sensors are installed

in PlaceLab: Interior conditions of the apartment are captured using distributed

temperature, humidity, bright, and barometric pressure sensors. The PlaceLab
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Table 1 Sensors used in Gynapse

Type Living Dining Kitchen Office Bedroom Hallway
Current 3 3 7 2 2 3
Switch 4 7 20 3 5 5

MITes OM 25 16 40 14 15 25
RFID 10 3 27 13 12 8
Motion 2 1 1 1 1 2
Water — — 4 — — 2
Gas — — 1 — — —

also features electrical current sensors, water flow and gas flow sensors. Small,

wired switches detect open/close events, such as the opening of linen closet. RFID

tags and MITes object movement sensors can be easily taped onto any non-wired

objects such as chairs, cups, remotes, tea-maker, and other objects people may

manipulate36). A resident in the PlaceLab can wear up to three wireless 3-axis,

0-10 G accelerometers that measure limb motion. A wireless heart rate monitor

(using a standard Polar chest strap) can also be worn. Five receivers spread

throughout the apartment collect all wireless object motion, accelerometer, and

heart rate data sent via the MITes wireless sensors36). Nine infrared cameras, 9

color cameras, and 18 microphones are distributed throughout the apartment in

cabinet components and above working surfaces. From these multi-modal sensors

a resident’s activities can be inferred15).

People may argue that, in real life, no residents will install so many sensors in

their house because of cost and complexity. However, it is important for research

purpose to reveal the effectiveness of energy saving for all sensors before we can

narrow them down. As a result, we select a set of 286 sensors that have close

correlation with device usage to build our system, which are shown in Table 1.

Since the sensor values are quite different, Data Aggregator normalizes them

into a range between 0 and 1, and builds them into time series as Θ⃗ =

[O⃗1, O⃗2, . . . , O⃗T ], where vector O⃗t =
(
s1t , s

2
t , . . . , s

M
t

)
is the observations of

HHMM, as explained in section 4.

We use multi-modal sensors excluding current sensors to obtain the usage in-

formation of 28 electronic devices, which are listed in Table 2.

We use current sensors to obtain a single device’s wake-up time, and energy

saving (which is the difference of current readings between working and low power

Table 2 Devices used in Gynapse

devices
Living 2 lights, TV, DVD player, speaker,
Kitchen 2 lights, microwave, coffee maker, tea maker, toaster

dish washer, mixer, can opener, stove, garbage disposer
Dining light, answer machine

Bedroom light, lamp, alarm,
Hallway light, washer, dryer
Office light, computer, monitor, fax machine

mode). Figure 7 shows the current reading of living room light. Time at point

A and B are 19:06:29.693 and 19:06:34.287 respectively, so the wake-up time of

this light is about 4.5 seconds. We can also find the current difference between

working and low power mode is about 1500 mA. For multiple devices, we can

calculate their correlation of current status. Figure 8 shows the current status of

coffee maker, toaster, and PC in a morning. We can observe the obvious linkage

between coffee maker and toaster. Statistically, we have the time series of current

consumed by coffee-maker and PC as CCM,t and CPC,t, so their normalized cross-

correlation can be calculated as:

corr =
1

n− 1

tn∑
t=t1

(
CCM,t − C̄CM

) (
CPC,t − C̄PC

)
σCMσPC

where C̄ and σ are mean and standard deviation of time series, and n is the total

number of data points. During this period, the correlation between coffee maker

and toaster is 0.7870, whereas the correlation between coffee maker and PC is

-0.0968. The numerical results also prove our argument in section 3.1.

There are totally 23 days of data available, within which we use 9 days to train

our three-level HHMM, and the rest 14 days for evaluation.

5.2 Preliminary Results

In this paper, we have mainly discussed three components of Gynapse: 1) a

probabilistic model to learn residents’ usage patterns at device level, 2) a pre-

dictive mechanism to forecast the usage probability of devices, and 3) a control

framework to maximize the energy saving under the constraint of user required

response time. Correspondingly, we evaluate Gynapse from four prospects: 1)

the learning curve of probabilistic model, 2) the precision and recall rate of pre-
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dictive mechanism, 3) the balance of energy saving and user required response

time, and 4) the total energy saving on each day.

5.2.1 Learning Curve

Figure 9 shows the learning curve of our three-level HHMM. At first the like-

lihood is very low, because the training data is not enough and the parameters

have not been properly learned. As we add more training data, the likelihood im-

proves gradually. After about 100 hours of training data, the likelihood becomes

stable. Roughly speaking, we can consider the training data are now enough.

However, we have to be aware of two things. First, strictly speaking, the ex-

act hours needed depends on the initial values of parameters, training policy,

and convergence criterion of the learning algorithm37). E.g., if we require the

converge threshold to be 0.001, we obviously need more training data than a

threshold of 0.1. Meek et al. provide more discussion about sample size and

learning curve in 38). Second, for some devices such as a stove, the resident does

not use it everyday. Therefore, in practice, we need more days to collect training

sample of stove than a heavily used device such as TV. The small peaks and

valleys on the curve after 100 hours reflect this point.

5.2.2 Precision and Recall

Table 3 shows the precision and recall of predicted device usage, which are

defined as:

Precision = TP
TP+FP Recall = TP

TP+FN

where TP (True Positive) means we predict a device to be used, and it is actually

used; FP (False Positive) means we predict a device to be used, but actually it is

Table 3 Precision and recall of predicted usage

Devices Precision Recall Devices Precision Recall
Living Bedroom
light 95% 93% light 94% 93%
TV 93% 92% lamp 91% 89%
DVD player 89% 85% alarm 84% 81%
Kitchen Dining
light 96% 93% light 93% 92%
microwave 87% 84% answer machine 86% 82%
coffee maker 85% 83% Hallway
tea maker 86% 84% light 93% 91%
toaster 83% 82% washer 89% 88%
dish washer 86% 83% dryer 88% 85%
mixer 82% 81% Office
can opener 80% 78% light 94% 93%
stove 81% 80% PC 92% 90%
garbage disposer 79% 77% fax machine 85% 82%
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not used; FN (False Negative) means we predict a device not to be used, but it

is actually used. Please note that, as explained in section 5.1, we determine the

actual usage from multi-modal sensors excluding current sensor. In the example

of Fig.3, we use RFID tag on keyboard to determine the resident actually starts

or stops using PC, but not the current sensor of PC.

From Table 3, we can find the predictive mechanism has better performance

for some devices such as lights, TV, and PC. This is because they are used more

frequently, so more training samples are available.

5.2.3 Energy Saving and Required Response Time

As explained in section 4.3, control framework maximizes the energy saving

under the constraint of user required response time TRS . Since the upper limit of
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Table 4 Combination of required response time

Combination Lights (sec) TV (sec) PC (sec)
Comb 0 4 4 4
Comb 1 2 2 2
Comb 2 4 6 6
Comb 3 4 10 10
Comb 4 4 10 30
Comb 5 4 10 44

TRS is a device’s wake-up time TWU , we use lights, TV, and PC to represent three

categories of devices according to their TWU : lights represent the devices with a

short wake-up time such as 4.5 seconds. Therefore, the resident should expect

the lights to response within 4 seconds⋆1. On the other end, PC represents

the devices with a long wake-up time such as 44 seconds. Then the required

response time of PC can range from 0 to 44 seconds. TV represents the category

between these two. We set a benchmark (Comb 0), where the required response

time is 4 seconds for all devices, and then calculate the extra energy saving of

different combinations of required response time. Table 4 shows the different

combinations.

Figure10 depicts the extra energy saving (compared with Comb 0) of different

combinations. We can find that, if the resident tolerates slow response from

devices, such as Comb 5, more energy saving is achieved. In contrast, if the

resident need immediate response from devices, such as Comb 1, less energy

saving is achieved. It clearly shows Gynpase’s capability of balancing energy

saving and required response time.

5.2.4 Total Energy Saving

After setting the user required response time, control framework calculates the

“ideal” scenario, compares it with the current one, and switches power mode

accordingly. If a device is not used in “ideal” scenario, but its power status is in

working mode, then we can turn it into low power mode for saving energy. In

this way, we can calculate the total power consumption based on the decisions

from Gynapse.

Figure 11 shows the real and Gynapse-adjusted total power consumption of

⋆1 For simplicity, we only use integer here.
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Fig. 11 The real and Gynapse-adjusted power consumption of one day

Table 5 Power consumption and saving ratio of each day

Day 1 2 3 4 5 6 7
Real (kWh) 8.64 9.82 9.36 3.11 7.68 12.55 7.72
Gynapse (kWh) 7.79 8.57 8.66 3.11 6.83 11.37 7.09
Saving Ratio 9.78% 12.72% 7.46% 0.00% 11.08% 9.36% 8.13%

Day 8 9 10 11 12 13 14
Real (kWh) 9.22 14.35 10.63 9.10 9.09 10.51 9.59
Gynapse (kWh) 8.58 12.37 9.00 7.83 7.90 9.26 8.47
Saving Ratio 7.01% 13.77% 15.32% 14.03% 13.01% 11.89% 11.77%

one day after the HHMM has been properly learned. We can find that the energy

saving are mainly achieved during morning and evening, when multiple electronic

devices are used. While in the early morning and noon, since no devices are used,

almost no power saving is achieved.

Table 5 shows the real power consumption, Gynapse-adjusted power consump-

tion, and saving ratio on 14 evaluation days⋆2. We can find that Gynapse aver-

agely saves about 11% of energy on these 14 days. The fluctuation of the saving

ratio depends on the resident’s behavior. For instance, since the resident was

⋆2 According to 39), the average household power consumption in Massachusetts is 21.17kWh
per day. Since PlaceLab is a 1000 sq. ft. apartment with a single person, it consumes less
electricity than a typical 2000+ sq. ft. house with four persons.
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not at home on the 4th day, less power was consumed and no power saving was

achieved.

6. Conclusions and Discussions

In this paper, we have designed a ubiquitous power management system called

Gynapse, which uses multi-modal sensors to predict the exact usage of each de-

vice, and then switches their power modes based on predicted usage to maximize

the total energy saving under the constraint of user required response time. We

have discussed the challenges and solutions for three important components of

Gynapse:

• We have built a three-level Hierarchical Hidden Markov Model (HHMM) to

represent multiple residents and hierarchical structure of their activities, and

learn the adaptive device usage patterns in different situations from multi-

modal sensors.

• Based on the learned HHMM, we have developed our predictive mechanism

in Dynamic Bayesian Network (DBN) scheme to precisely predict the usage

of each device, with device’s wake-up time and user’s required response time

under consideration.

• With the predicted usage probability of each device, we have followed a four-

step process to balance the total energy saving and response time of devices

by switching their power modes according to the scenario with the highest

energy saving and probability.

Correspondingly, we have used PlaceLab data set to evaluate Gynapse from

four prospects: 1) the learning curve of three-level HHMM, 2) the precision

and recall rate of predictive mechanism, 3) the balance of energy saving and

user required response time, and 4) the total energy saving on each day. The

preliminary results have demonstrated that as a ubiquitous power management

system, Gynapse has the capability to reduce power consumption while keeping

the response time not exceed user requirement. It provides a complementary

rather than competitive apporach to previous power mode switching systems.

6.1 Discussions

In this section, we provide some discussions about Gynapse as follows:

Undesirable aspects of overly energy saving: “Overly energy saving”

means a device should be in working mode, but it is switched off for saving

energy. As a result, it may cause two “undesirable aspects” as follows:

• Incorrect switch-on/off: e.g., when the resident goes to restroom during his

working on PC, Gynapse incorrectly turns PC off. Although the resident is

in a little break, Gynapse switches PC off incorrectly for saving energy.

• Delay of response: e.g., Gynapse does not turn on PC until the resident sits

in front of it, so he has to wait for a long wake-up time. In this case, the

resident wants to use a device, and Gynapse correctly predicts that. However,

for saving energy, Gynapse does not switch it on until the last moment.

In case 1, Gynapse incorrectly predicts the resident’s activity. Essentially,

it is impossible to completely eliminate the incorrect prediction. However, we

believe the possibility still exists to improve Gynapses accuracy. As we discussed

in section 4.2, a potential method is integrating user feedback with predictive

mechanism. Of course, the incorrect prediction cannot be completely avoided

even if we introduce user feedback into the system. When Gynapse incorrectly

predict device usage, the resident has to explicitly define his policies, like in a

rule-based system, or manually switch the devices. Incorrect prediction is the

limitation of Gynapse, and the choice among Gynapse, rule-based systems and

manual switching depends on the resident and his situation.

In case 2, Gynapse correctly predicts the resident’s activity, but the resident

may still feel frustration because of the long wake-up time. To solve this problem,

we provide a variable in predictive mechanism to reflect user’s required response

time. Then Gynapse tries to maximize the energy saving under the constraint of

user’s required response time.

Comparison of Gynapse and automatic power-off mechanism in

terms of energy saving: We have already discussed in section 2 that the au-

tomatic power-off mechanism cannot handle complicated situations, such as the

resident may watch TV when cooking in kitchen. However, in terms of energy

saving, it is still a simple and effective method, which can be found in infrared-

controlled lights or an electric pot. A simple example is depicted in Fig. 12.

Assume the resident stops using an electric pot at T1; after a certain time TAF , it

is automatically switched off to low-power model (LP) at T2. When the resident

starts using the pot again at T3, it is switched on. We compare the energy saving
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Fig. 12 Automatic power-off vs. Gynapse

of automatic power-off mechanism with Gynapse at switch-off (around T2) and

switch-on (around T3) respectively.

At switch-off, Gynapse uses the resident’s activity to help making decision. For

instance, if Gynapse finds the resident has left home after using the pot, it can

turn off the pot at T
′

2 without waiting for a certain time. Whether Gynapse saves

more or less energy than automatic mechanism at switch-off actually depends on

the length of TAF and TGF : if TAF is longer, then Gynapse saves more energy;

if TAF is shorter, then Gynapse saves less energy.

At switch-on, since Gynapse predicts the resident’s activity to shorten response

time of devices, it cannot save more energy than automatic power-off mechanism.

For instance, an electric pot may need some time to heat water to a certain

temperature, such as 100oC for tea. If Gynapse predicts that the resident is

going to make some tea, it can turn on the pot to heat water before T3. Hence,

the resident need not wait for a long response time. In contrast, the automatic

power-off mechanism will not start heating the water until the resident turns

it on. As a result, Gynapse can help the resident by shortening response time,

though this means less power saving.

Based on the discussion above, we can find that for a simple device, whether

the automatic power-off mechanism may save more or less energy depends on the

summation of switch-off and switch-on parts. However, Gynapse can save energy

for a device used in complicated situations, which may not be easily handled by

the automatic power-off mechanism. In addition to energy saving, Gynapse also

considers the response time of devices.

Appropriate information for human activity prediction: Gynapse aims

at providing a flexible scheme that can incorporate a variety of information into

the prediction of human activity, rather than comparing which information is

the most appropriate. As we explained in section 4, the input of our system is

a time series of vectors O⃗t =
(
s1t , s

2
t , . . . , s

M
t

)
, where sit corresponds to the value

of sensor i at time t. No matter this “sensor” is a real sensor or a virtual one,

such as “a day of the week”, it can always be put into the vector. This scheme

provides great flexibility to our choice of information. With the development of

researches on sensors and human activity recognition, we can incorporate new

information into our system.

Comparison with other power management systems: We are fully aware

of the importance of comparing Gynapse with previous power management sys-

tems. However, previous systems are all built in their own environments with

different settings of devices and sensors. The lack of benchmark makes the com-

parison very difficult if not impossible. Our evaluation with MIT PlaceLab data

set reflects our effort to use a public data source, so it may be easier for other

researchers to compare with us. However, since PlaceLab data is not designed for

evaluating energy consumption, it inevitably has some limitations, and we have to

leave some situations untested, such as multi-resident models and integration of

user feedback. Currently, we are building a multi-modal sensor database mainly

for power consumption evaluation in our laboratory. We believe the release of our

data will provide a high quality database for further research and comparison.
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