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Abstract 
 

Ubiquitous computing as the integration of sensors, 
middleware, and networking technologies to form a 
“smart space” environment relies on the development 
of both software and hardware solutions. For over 3 
years, our group has been developing a smart-space 
environment, involving the exploration of core 
technologies and attractive applications. In this paper, 
we introduce the challenges faced and lessons learned 
in designing and developing a smart-space 
environment, including device control services, 
locating systems, wireless sensor nodes, and 
middleware services. 

1. Introduction 

The notion of ubiquitous computing is quite distinct 
from the conventional computing paradigm in that it 
implies the provision of services via a network of 
invisible computers. In a ubiquitous computing 
environment, tiny devices such as sensors are 
embedded in living spaces to collect real-world 
information and build a model of the real world in 
order to provide computer-controlled services. Using 
this repository of user and world contexts,  users can 
reap the benefits of smart and attentive services 
provided by embedded computers.  
The realization of ubiquitous computing relies 

heavily on the miniaturization of computers and 
improvement of communication protocols and power 
supply technologies. However, it is also necessary to 
develop novel services to complement these new 
technologies and facilitate the development of new 
core technologies. This situation is quite similar to that 
surrounding the birth of the Internet. New services and 
applications are inspired by the use and exploration of 
the new technologies, and vice versa. Tim Berners-
Lee, the inventor of the World Wide Web (WWW), 

stated that “I just had to take the hypertext idea and 
connect it to the TCP and DNS ideas and the World 
Wide Web.” [1] This implies that most novel 
inventions are supported by existing technologies. In 
addition, the use of new services triggers the invention 
of new core technologies. A good example is the 
search engine algorithm, which was developed as the 
WWW was deployed. In the research and development 
of ubiquitous computing, synergistic effects can 
therefore be expected between the creation of services 
and the development of core technologies. 
Since 2001, our group has been constructing a smart-

space environment, which has involved the exploration 
of core technologies and attractive applications. 
Through this experience, we have learned many 
lessons and developed several practical systems and 
core technologies. Most importantly, this experience 
has lead us to conclude that the development of both 
software and hardware is indispensable for ubiquitous 
computing, which is realized as an integration of 
various components including sensors, middleware, 
and networking technologies.  

1.1. Related works 
Several other research programs are currently in 

progress with a shared perspective of exploring a new 
research agenda. These include iRoom [1], the Aware 
Home [3], Easy Living [4], Smart-Its [5], and 
SSLab[6], which are all practical approaches to 
realizing smart environments. Although our project 
shares a similar philosophy to these other programs, 
the underlying technologies, goals, and lessons learned 
are different. We believe it is meaningful for each 
project to report on their respective experiences and 
the solutions developed. In this report, we present the 
design considerations for our testbed room, the 
development of our distributed object localization 
system for physical-space internetworking 
(DOLPHIN) ultrasonic locating system, the U3 sensor 
node, and STONE middleware. 



2. How we made things smart 

In the absence of a formulaic method for building a 
smart environment, we began by trial and error from 
some basic principles.  The testbed for this project was 
a room of about 100 m2 in area (8.6 m × 12 m; Figure 
1) with steel trellises installed on the ceiling to allow 
the easy attachment of various devices. The room was 
divided into three main spaces, a working desk 
environment, a collaborative meeting space, and a 
relaxing living space. Up to 10 researchers actually 
work in this room everyday. 

 

Figure 1 STONE room  

The first step in the construction of our smart 
environment was embedding devices into the 
environment logically. This involved the connection of 
computers, audio-video equipment, and lighting to a 
network. The appliances in the room were modified 
using an off-the-shelf multipurpose infrared remote 
control (“crossim”), which was connected to a 
computer via an RS-232C interface to allow the 
appliances to be controlled via the network. The 
infrared signal transmitter was extended in order to 
ensure the signal reached all areas of the room.  

2.1.  Smart Baton System 
Although audio-visual equipment was connected to 

the network, it simply was not worth the effort to boot 
the computer and open a browser in order to turn on a 
television in front of the user. Moreover, when a large 
number of appliances are connected, selecting the 
appropriate device from the list can also be quite 
troublesome. 
To overcome this problem, we developed a Smart 

Baton System, which provided the following features 
in order to overcome these inconveniences: 

(1) Explicit and easy selection of appliances 
(2) Provision of an appropriate user interface for each 

appliance 
(3) Support of multi-user operation 
(4) User identification and realization of differentiated 

services for each user 
Although several middleware architectures have been 

developed for ubiquitous computing environments, 
such as Jini [7] and UPnP [8], these existing 
architectures do not satisfy the first requirement since 
their directory service-based approach does not allow 
users to choose appliances intuitively. Infrared remote 
controls are preferable in terms of intuitive 
manipulation. However, infrared remote controls 
usually provide only a poor user interface and do not 
allow for user customization [9], thus not satisfying the 
second requirement. A system such as that reported by 
Olson and Nielson [10] allows users to explicitly 
choose an appliance with a laser pointer via various 
user interfaces. However, as the laser spot is 
recognized by image processing, the system allows 
only one user to control appliances at a time, and as 
such it does not satisfy the third and fourth 
requirements.  

In order to satisfy all requirements, we developed 
the Smart Baton System as a laser-pointer-based 
manipulation technique. The system differs from 
similar techniques in that it is possible for users to 
download an appropriate user interface to a handheld 
device via the network, and target appliances are able 
to distinguish between multiple users and provide 
differentiated services.  

2.1.1. System 

An overview of the Smart Baton System is shown in 
Figure 2. The system consists of smart batons, smart 
baton-compatible appliances, and a certificate 
authority (CA). A smart baton is a handheld device 
equipped with a laser pointer, and is used to control 
appliances. A smart baton-compatible appliance has a 
laser receiver and is connected to the network. The CA 
is used to authenticate and identify users and 
appliances. Figure 3 illustrates the function diagram 
for the smart baton and an appliance. The user chooses 
an appliance by pointing to its photo detector with the 
laser pointer, and the smart baton sends information by 
the laser beam. The appliance detects the beam and 
obtains the information via its laser receiver, identifies 
the network address of the smart baton, and establishes 
a network connection to the smart baton. An 
authentication process follows to establish the user’s 
identity, allowing so the appliance to provide different 



user interfaces and services for respective users. For 
example, the system can prevent children from turning 
on a television at night while allowing adults full 
control. 
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Figure 2. Smart Baton System 

iPAQ H3660 PIC16F628

Laser Pointer

Sub Carrier 3kHz
Data 50bps

50bps

Visible
Laser

HPF

Serial I/F

3kHz

Amplifier

3KHz BPF

Solar Cell

Laptop PC

802.11b

DetectionPIC16F877

LAN

Base 
Station

Certificate 
Authority  

Figure 3. Hardware function diagram 

2.1.2. Security Considerations 

In a ubiquitous computing environment, appliances 
will exploit user information in order to provide 
flexible services, which may mean users will provide 
appliances with private information. In such a 
situation, there may be a concern about access to this 
private information when it is transferred to the 
appliances. In the Smart Baton System, there are two 
communication channels between users and appliances 
over which information is transferred; the laser beam 
and a network connection. The former is vulnerable to 
impersonating appliances, such as a fake appliance set 
to collect information received by a laser beam. To 
avoid such security problems, the laser beam conveys 
only unimportant information, such as the Internet 
protocol (IP) address of the smart baton, the TCP port 
number, and a randomly generated session identifier. 
As the TCP port number and session identifier are one-

time values, the IP address of the smart baton remains 
the only potential target of theft, but this is not a 
serious issue because the IP address can already be 
easily revealed via the domain name server (DNS). 
The network connection is vulnerable to wire-

tapping, but that can be easily prevented employing an 
encryption technology. In our prototype 
implementation, all communication over the network is 
encrypted by secure sockets layer (SSL) encryption, 
making it virtually impossible for someone listening 
on the network to steal private user information. This 
measure also makes the system resistant to tampering, 
and the authentication of appliances prevents 
impersonation attacks on the network.  
 

 

Figure 4. Prototype system 

2.1.3. Implementation 

Figure 4 shows a prototype implementation of the 
Smart Baton System. In this implementation, a 
COMPAQ iPAQ Pocket PC H3660 equipped with a 
custom laser transmitter is employed for the smart 
baton, and a laptop computer equipped with a laser 
receiver is adopted as a smart baton-compatible 
appliance. The laser transmitter consisted of visible 
laser device and a microcontroller (PIC16F628, 
Microchip Inc.), which is controlled via the iPAQ's 
serial interface. The laser transmitter sends data via the 
visible laser at 200 bps upon receiving data from the 
iPAQ. The laser receiver consists of a photodetector 
(solar cell), a signal-processing circuit, and a 
microcontroller (PIC16F877, Microchip Inc.), and 
sends received data to the laptop via a serial interface.  
In this implementation, HTML and HTTP are used as 

the basis for the user interfaces in order to simplify the 
system. When an appliance serves a user, a Device 
Control Server sends the URL of the user interface to 
the smart baton, and a web server runs the appliance. 
On the smart baton, a web browser is invoked and 
accesses the URL, and the user then controls the 
appliance via the web browser. As the system can 
distinguish between users, appliances can provide 

(b) Information Appliance (a) Smart Baton (PDA) 



differentiated services for each user. For example, by 
checking the user’s age, the system can provide a 
remote control interface that prohibits access to 
prohibited programs. 

3. Obtaining Contexts in Real World 
Environments 

Our next challenge was to develop a platform that 
included a computer model of the real-world 
environment. This system required the implementation 
of a locating system and the deployment of sensor 
nodes. 

3.1. DOLPHIN 
In a ubiquitous computing environment, the physical 

location of indoor objects is key information for 
supporting context-aware applications. Several 
positioning systems have been proposed for obtaining 
indoor location information, including Active Bat [11] 
and Cricket [12], which use ultrasonic time difference 
of arrival (TDOA) data to measure the three-
dimensional position and orientation of objects in an 
indoor environment with high accuracy. However, 
such ultrasonic positioning systems require additional 
hardware for the transmission and reception of 
ultrasonic pulses, and usually require manual pre-
configuration of the locations of reference beacons or 
sensors. The setup and management costs of such a 
system would be unacceptably high if the system were 
to be applied to a large-scale environment such as an 
office building. An ad-hoc localization mechanism 
[13] can be applied to such problem. In [13], the 
authors proposed a collaborative multilateral algorithm 
to solve the localization problem in a distributed 
manner, and performed a detailed simulation-based 
analysis of a distributed localization system. To design 
a practical location information infrastructure, we 
believe that experimental analysis is also required in 
order to discover practical problems with the 
distributed localization system.  
From this point of view, we developed a distributed 

positioning system called the Distributed Object 
Localization System for Physical-space 
Internetworking (DOLPHIN), which determines the 
position of an object using only a few manually 
configured references. The system was constructed 
from off-the-shelf hardware devices, and represents a 
simple but practical distributed positioning algorithm.   

3.1.1. Positioning Algorithm  

Figure 5 shows an overview of the DOLPHIN 
system. The system consists of a number of DOLPHIN 
nodes consisting of a 2400 bps radio frequency (RF) 
transceiver for time synchronization and message 
exchange among nodes, several 40 kHz 
omnidirectional ultrasonic transducers, and a Hitachi 
H8S/2215 16 MHz microprocessor for calculating the 
location of the nodes.  

 

Figure 5. DOLPHIN system  

The key premise of our positioning algorithm is hop-
by-hop localization. For example, in the bottom left of 
Figure 5, node D can determine its position by 
receiving ultrasonic pulses from the reference nodes A, 
B, and C. However, nodes E and F cannot receive 
ultrasonic pulses from reference nodes due to physical 
obstacles such as a wall. Here, if the position of node 
D is determined, and node E can receive ultrasonic 
pulses from node D, node E can compute its position 
using the distances from nodes B, C, and D. If the 
locations of nodes D and E are determined, node F can 
compute its position using nodes C, D, and E. In this 
way, all nodes in the DOLPHIN system can be located. 
There are two main advantages to this mechanism. 
First, the system requires only a few (minimum three) 
nodes to determine the positions of all nodes. Second, 
nodes can determine their positions even if unable to 
receive ultrasonic pulses from reference nodes directly.   
The positioning algorithm runs by exchanging several 

messages as shown in Figure 6: and identification (ID) 
notification message (IDMsg), measurement message 
(MsrmtMsg), and location notification message 
(LocMsg). The nodes in the system are assigned such 
that there is one master node, one transmitter node, and 



the rest receiver nodes. Consider the example depicted 
in Figure 5, where nodes A, B, and C are reference 
nodes, and nodes D, E, and F are normal nodes (the 
positions of the nodes are unknown). Here, we assume 
that nodes A, B, and C have node lists [B, C], [A, C], 
and [A, B], respectively. We also assume that node E 
and node F are unable to receive ultrasonic pulses from 
node A because of an obstructing wall. 

 

Figure 6. DOLPHIN positioning algorithm 

With node A acting as the master node, Figure 6 
shows the timing chart for the positioning algorithm. 
First, node A chooses one node randomly from its 
node list [B, C]. If node B is chosen, node A transmits 
MsrmtMsg including the ID of node B. On receiving 
the message, node B becomes the transmitter node and 
generates ultrasonic pulses.  At the same time, nodes 
C, D, E, and F become receiver nodes and start internal 
counters (synchronization phase). When a receiver 
node detects an ultrasonic sign from node B, it stops its 
internal counter and calculates its distance from node 
B. After several milliseconds, depending on the time 
taken by the overflow of the internal counter, node B 
sends LocMsg to notify the receiver nodes of its 
position. The receiver nodes that are able to detect the 
ultrasonic signal from node B store the location of 
node B and their distances to node B in their position 
table (measurement phase). All nodes then listen for 
IDMsg for several milliseconds (advertisement phase). 
If there is a node that could determine its position 
based on three or more distances, it advertises its ID in 
this phase. This ID is added to the node list of every 
other node.  
In the above example, because nodes D, E, F cannot 

determine their positions, no IDMsg is sent by those 
nodes in this phase. This sequence of phases defines 
one cycle of the positioning algorithm in the 
DOLPHIN system. In the next cycle, node B, which 

acted as a receiver node in the previous cycle, becomes 
the master node, and the positioning algorithm 
proceeds in the same manner. After three or more 
cycles of positioning, node D can determine its 
position based on measured distances from nodes A, 
B, and C. At which time, node D can send its IDMsg 
in the advertisement phase. All other nodes that 
received the IDMsg from node D add the ID of node D 
to their node lists, and node D is recognized as a 
candidate master node. After node D becomes master 
node, node E and node F can measure their distances 
from node D. Then, node E can determine its position 
and advertise its IDMsg. Finally, based on nodes C, D, 
and E, node F can determine its position. In this way, 
we can locate all nodes in the DOLPHIN system.  
In the DOLPHIN system, it is necessary to prepare 

for node failure. To recover from node failure, each 
node in the system has a recovery timer and an 
advertisement timer. The recovery timer is set when 
nodes receive MsrmtMsg, and expires if there has been 
no MsrmtMsg for a certain period. If the recovery 
timer expires, a node in the system is chosen randomly 
to become master node, and the positioning algorithm 
resumes. If a candidate node does not receive 
MsrmtMsg from other nodes within a certain period, 
the advertisement timer in the node expires, meaning 
that the node is not recognized as a master node by the 
other nodes. In this case, the node retransmits IDMsg 
in the advertisement phase of each positioning cycle.  

3.1.2. Experimental Result  

As an experimental evaluation of the algorithm, we 
placed seven nodes as shown in  
Figure 7, and computed the average and variance of 
the measured position of each normal node (nodes D-
G) over 1000 cycles. The results revealed that the 
system could determine the position of objects with an 
accuracy of around 15 cm in a real indoor 
environment. However, the positioning error for nodes 
E-G was higher than that for node D, as the 
positioning error at node D affects the position 
determination of nodes E-G, which determine their 
position based on node D. Although this error 
propagation problem is inherently unavoidable in the 
DOLPHIN system, we expect to minimize positioning 
error by placing reference nodes at appropriate 
locations. 
Our group has obtained a large amount of data 

through experimentation in our laboratory. We are 
currently designing an improved version of the 
positioning algorithm that can handle practical 
problems such as multipath propagation and node 
mobility.  



 
Figure 7. Experimental results 

U3 
In addition to location information for users and 

objects, real world information is helpful for context-
aware applications. When designing a practical sensor 
network architecture for future ubiquitous computing 
environments, it is desirable that the requirements of 
future applications be made clear. However, it has 
been difficult to envision what such future applications 
will be like. To assist in the implementation and 
evaluation of prototype applications and to clarify 
technical challenges, we have developed a sensor 
network development testbed called U3 (U-Cube) that 
allows developers to flexibly implement various 
applications. The U3 device is a 50 mm cube 
containing a power module, a microprocessor module, 
an RF communication module, and a sensor module.  
The first implementation of U3 is capable of sensing 
several types of data such as temperature, brightness, 
and the presence of humans, and can send this 
information to other nodes and/or peripheral devices 
including computers and PDAs.  
 

 
Figure 8. U3 hardware components 

3.1.3. Hardware Design 

There is a wide range of potential applications and 
protocols for sensor networks. For environmental 

monitoring applications, it would be useful if the 
wireless nodes could provide a generic sensor 
interface, which would allow the sensors to be easily 
replaced. For practical reasons, it would also be 
preferable to be able to provide solar panels and 
rechargeable batteries. Moreover, users might want to 
choose more appropriate computing and wireless 
communication devices according to the power 
consumption and required processing/transmission 
speed. To meet these kinds of requirements, the 
hardware components of the sensor node should be 
constructed as an ensemble of independent modules 
that can be easily replaced. However, conventional 
sensor network nodes [13][15][16] such as MICA 
Mote only allow replacement of the sensor board. 
Other components such as the microprocessor and 
wireless communication module are not replaceable.  
In order to achieve this flexibility, we divided the 

functionality of the sensor node into four physically 
separated modules: a power control module, a 
processing module, a communication module and a 
sensing/actuating module. Each module is then 
connected to others by a bus connector to achieve 
extensibility.  

3.1.4. Software Design 

Due to the small physical size of the sensor nodes and 
the limited power consumption, software on the sensor 
node hardware must make efficient use of processor 
and memory while providing low-power 
communication. In this section, we describe task 
scheduling and application programming interface 
(API) layering in the sensor node. 
1) Event and task scheduling 
In general, one sensor node plays several roles in the 

sensor network. For example, information may be 
simultaneously captured by sensors, manipulated, and 
streamed onto a network. Alternatively, data may be 
received from other nodes and forwarded in multi-hop 
routing or bridging situations. To realize such 
concurrent execution using such resource-restricted 
hardware, we allow the interruption of tasks by events. 
Here, an event is defined as a process that must be 
executed immediately and is assumed to complete 
immediately, such as the arrival of wireless packets. A 
task is defined as a process that takes longer than an 
event to complete, such as the periodic capturing of 
environmental data. Event-based task scheduling 
incurs only a low overhead for state transition 
compared to a stack-based approach. Accordingly, this 
scheme reduces processor load and power 
consumption.  



A media access control (MAC) algorithm 
significantly improves the system performance of the 
sensor nodes. Specifically, MAC ensures accurate 
synchronization between sending and receiving nodes, 
which is crucial for high-speed, reliable transfers. As 
application tasks can be frequently interrupted by 
wireless communication events, an additional 
microprocessor dedicated to wireless communication 
and application tasks is provided to reduce the load on 
the main processor.  
2) Functional layering  
The primary objective of U3 is to provide a testbed 

sensor network for the development of ubiquitous 
computing environments. Having a testbed 
development environment is essential for the 
innovation of attractive applications. For example, if a 
user wants to design an appropriate communication 
protocol for a specific application, it would be useful if 
various APIs for controlling communication 
functionality could be provided in the development kit. 
While TinyOS [17] is a component-based runtime 
environment designed to provide support for 
embedded systems such as MICA Motes (UC 
Berkeley), it does not provide a separate 
communications module. To date, we have defined 
several APIs that provide layered abstracted 
communication functions (application, media access, 
physical layer of RF and IrDA 1.0). This layering 
allows developers not only to reuse the APIs but also 
to concentrate on the development and evaluation of 
the specific functions or protocols in which they are 
interested. Of course, it is conceivable that 
conventional layering may no longer be valid for 
sensor networking. In that case, however, developers 
can choose not to use the APIs and conventional 
layering.  
Communication Module: this module consists of an 
RF monolithic transceiver (300 MHz band, On-Off 
keying, 115.2 kbps), a helical antenna, and second PIC 
microcontroller for processing network protocols. The 
current implementation realizes data transmission of 
up to 100 kbps with our current implementation of the 
carrier sense multiple access/collision avoidance 
(CSMA/CA) protocol. The transmission range is 
within a radius of 30 m. The communication module 
hosts a dedicated processor to drive the RF transceiver. 
As mentioned in the previous section, it is possible to 
implement various MAC and network layer protocols 
using this processor.  
Sensor/Actuator Module: the sensor module is 
dedicated to obtaining information about the 
surrounding environment. The implementation of the 

sensor node only includes a motion sensor, a 
brightness sensor, and a thermometer, but various 
transducers can be connected to the board via a generic 
bus connector.  
3) Software Implementation 

Figure 9 shows the software architecture of U3. We 
adopted C as the programming language due to the 
wide availability of commercial C compilers, which 
provide plenty of built-in functions for handling 
features such interrupts. 
 

 

Figure 9.  U3 software architecture 

The U3 software consists of the application software, 
wireless communication software, and a development 
environment. The application software and wireless 
communication software are implemented in PICs on 
the main processor board and the wireless 
communication board, respectively. Messages between 
the software travels via the I2C bus.  
Application software controls the sensor and 

actuating devices, and forwards processed data to the 
wireless communication software. Multiple tasks are 
scheduled in a first in, first out (FIFO) task scheduler. 
The application software also provides APIs for 
communicating with a computer or PDA (via IrDA), as 
well as other nodes (via the RF module). After all tasks 
in the scheduler have been processed, the system sets 
the main processor in sleep mode to save power. Timer 
events generated by the calendar integrated circuit (IC) 
and packet arrival events generated by the IrDA chip 
and the wireless communication software can wake the 
main processor. 
The wireless communication software provides APIs 

that bridge the application processor and the wireless 
RF modules. The wireless communication software 
includes a routing protocol and MAC protocol, which 



are implemented independently such that each of the 
protocols can be replaced according to user 
requirements. In the physical layer, we provide 
periodic transmission and reception control for the RF 
communication module. The RF module transmits data 
by amplitude shift keying (ASK), where each bit is 
encoded with the Manchester Code, and encoded data 
is sent after the transmission of a preamble (1 Byte) 
and header (2 Bytes).  

3.1.5. Related works 

MICA Motes and U3 share a similar motivation: to 
develop an off-the-shelf sensor network testbed. 
However, they differ on several points. Although 
MICA Motes and U3 use similar RF wireless 
communication modules for communication between 
nodes, the frequencies used differ due to legal 
regulations (the 916 MHz used by MICA Motes is 
restricted to transmission over less than 1 m in some 
countries including Japan). In U3, we use two PICs, as 
a processor and network controller. Compared to the 
ATMEL 90LS8535 controller installed in MICA 
Motes, PIC has advantages with respect to power 
consumption, particularly with the sleep mode feature. 
Due to the use of these two controllers, U3 therefore 
has a potential advantage in terms of power 
consumption. In addition, MICA Motes is only 
equipped with replaceable sensor board; in U3, both 
the sensor board and main processor, network and 
power modules can be replaced. IrDA communication 
with other peripheral device is also unique to U3. 
Finally, TinyOS as used by MICA Motes provides 
event-based development environments, but does not 
provide layering of the network stacks due to the 
monolithic networking module. 

4. Middleware technologies 

The technologies we have introduced to make an 
environment “smart” represent fundamental 
components for realizing ubiquitous computing, but a 
“glue” for creating applications and services is 
required. This glue is implemented in the form of 
middleware to coordinate the ubiquitous devices on the 
network, and forms an indispensable part of the 
system. As ubiquitous computing environments can be 
expected to be highly dynamic, heterogeneous, and 
context-dependent, the functionality of applications 
should be able change depending on the dynamically 
changing user context. For example, when a user 
wishes to brows a portable document format (PDF) file 
on a PDA display, the document-browsing application 
running on the PDA will require an additional 

transcoder function to reformat the PDF file. If the 
user wishes to use a voice-only device such as a 
personal digital cellular (PDC) to obtain information in 
the PDF document, the application will need to locate 
and use a PDF-to-text function as well as a text-to-
voice function. Thus, to enable ubiquitous Internet 
applications with adaptable functionality on the fly, a 
mechanism capable of finding and synthesizing the 
appropriate functions transparently on the Internet is 
necessary.  

4.1. STONE 
Our group is currently developing the STONE 

network service platform, which dynamically 
synthesizes a desired context-aware service from a set 
of resources. STONE provides service discovery, 
context awareness, service synthesis, and service 
mobility in a unified way using a naming service 
[18][19].  
Figure 10 depicts the STONE architecture. STONE 

has three major components: a functional object, a 
service resolver, and a service graph. The functional 
object is the most basic element of a service, and has 
the mechanisms required for providing the requested 
service by dynamic linking to another functional 
object. Functional objects may be either hardware or 
software, and include objects such as the display, a 
camera, speaker, microphone, various types of 
transcoders and proxies, and streaming videos. A 
synthesized service is a string of functional objects 
such as the dynamic combination of functions of the 
source of world news, a transcoder, and a display.  
 

 

Figure 10. STONE architecture 

In this system, even if a change in the environment 
around the functional object or user occurs, the service 



can be maintained and be transparent to mobility or 
failure as long as the functions composing the service 
can be maintained (i.e., distribution transparency). 
Alternatively, the service provided can be tailored to 
the environment by modifying one function into a 
more appropriate function as the environment changes 
(i.e., context awareness).   
STONE achieves distributed transparency and 

context awareness through appropriate naming of 
functional objects. Networking systems are 
traditionally organized using a layering model 
composed of applications, transport/networks, and link 
layers. This model is useful for clearly defining the 
responsibilities and restrictions of software that exists 
at each level. To be implemented fully, a layer requires 
a naming scheme, a means of resolving those names, 
and a means for routing communications. On the 
Internet, the naming types used in each layer include 
MAC addresses in link layers, IP addresses in network 
layers, and URLs and email addresses in the 
application layers. In STONE, we extend the model to 
include a new top layer.   
  STONE adopts location-independent naming for 
describing the objects being searched for by users 
and/or applications, not the location of those objects. 
Current naming types for IP addresses and URLs 
specify the network location of server and client 
machines, and as such these names are location-
dependent. The advantage of location-independent 
naming is to be able to achieve distributed 
transparency with respect to access, location, failure, 
and replication. Location-independent naming allows 
nodes that provide a function to precisely describe 
what they provide and users to describe what they 
require. This makes it possible to achieve service 
discovery, context awareness, service synthesis, and 
service mobility in a unified way. The following is an 
example of STONE naming. Every name is 
represented as an attribute-value pair, and includes an 
interface name for describing the function of a 
functional object.   
[FO Name =  
   [Location=x.y.z@myhome.net],    //Physical Location  
   [InterfaceName=                     //Function Description  
     [Output Interface = Rendered Video],   
     [Input Interface = MPEG4/IP],  
     [Relation = Convert Input Interface to Output Interface], 
       [Ctrl Interface = Display Control/GUI]  
   ]  
]  
[Access Pointer List= [Address=xx.xx.xx.xx:yy],  //IP+Port ]  

Location-independent naming, however, often has a 
flat name space, resulting in a scalability problem, in 
contrast to location-dependent naming such as DNS 
which has a hierarchical name space. The introduction 
of interface names in STONE naming mitigates the 
scalability problem by grouping interface names to 
form a two-level hierarchy.    
The service resolver network overlaid on the Internet 

is used to route a request to the appropriate locations 
by maintaining a mapping between interface 
descriptions and their network locations. The service 
resolver network is a logical overlay network, and 
finds and connects functional objects using interface 
names. As an IP router routes data by examining its 
destination IP address, the service resolver routes data 
by examining its interface name.   
The service graph specifies the service request of a 

client, for example,”I would like to see the camera 
images for room 409 on the nearest monitor”. The 
service graph may be created by the client, or may be 
downloaded from the network. It describes the 
interconnection between functional objects (e.g., to 
connect a camera output function with a monitor input 
function), and a context script to specify context 
awareness explicitly (e.g., to select the output function 
of the nearest monitor). When a user issues a service 
graph, STONE finds suitable functional objects and 
synthesizes the requested service by combining several 
functional objects dynamically in a context-aware 
manner.  
We have implemented STONE in a testbed room and 

constructed several application prototypes, including 
mobile video conferencing, a ‘connect to’ service, and 
a ‘media kitchen’ service. The locations of objects and 
people can be determined using the indoor positioning 
system installed in the testbed room.  

5. Conclusion 

In this paper, we have introduced our approach for 
realizing a ubiquitous computing environment. Our 
smart space testbed is comprised of networked 
appliances, a device control system (Smart Baton), an 
ultrasonic location system (DOLPHIN), wireless 
sensor nodes (U3), and service synthesize middleware 
(STONE). This testbed is unique in that research on 
both hardware and software are conducted using a 
single testbed environment with coordination between 
research topics.  
Our next step is to develop a variety of context-aware 

applications using these technologies, and deploy these 
applications in the smart space. It is only through such 



practical experimentation that the real functionality of 
ubiquitous computing can be realized and new 
research opportunities be discovered. 
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