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PAVENET OS: A Compact Hard Real-Time Operating System for
Precise Sampling in Wireless Sensor Networks

Shunsuke SARUWATARI ∗, Makoto SUZUKI ∗, and Hiroyuki MORIKAWA ∗

Abstract : The paper shows a compact hard real-time operating system for wireless sensor nodes called PAVENET
OS. PAVENET OS provides hybrid multithreading: preemptive multithreading and cooperative multithreading. Both
of the multithreading are optimized for two kinds of tasks on wireless sensor networks, and those are real-time tasks
and best-effort ones. PAVENET OS can efficiently perform hard real-time tasks that cannot be performed by TinyOS.
The paper demonstrates the hybrid multithreading realizes compactness and low overheads, which are comparable to
those of TinyOS, through quantitative evaluation. The evaluation results show PAVENET OS performs 100 Hz sensor
sampling with 0.01% jitter while performing wireless communication tasks, whereas optimized TinyOS has 0.62% jitter.
In addition, PAVENET OS has a small footprint and low overheads (minimum RAM size: 29 bytes, minimum ROM size:
490 bytes, minimum task switch time: 23 cycles).
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1. Introduction
Wireless sensor networks (WSNs) have a number of poten-

tial fields of applications, including habitat monitoring, military
applications [1], wildland fire monitoring [2], volcano monitor-
ing [3], and structural monitoring [4]–[6]. Each application has
different requirements for communication protocols and sens-
ing tasks, and sensor nodes have very limited physical resources
because of their design requirements, namely, low power, low
cost, and small size.

In [7], Saruwatari et al. have developed a hardware and soft-
ware framework for wireless sensor networks, and applied it
to the various sensor network services. In a part of the appli-
cations, we found that sensor nodes must perform hardware-
tightened tasks such as radio management, which must be com-
pleted by highly constrained deadline. While Ref. [7] fo-
cused on a hardware and software development environment,
the present paper focuses on an operating system that supports
hard real-time tasks.

TinyOS [8] is a standard operating system for wireless sensor
nodes. TinyOS takes up only 47 bytes of RAM and 473 bytes
of ROM and switches tasks in several dozens of cycles. This
excellent compactness is provided by the event-based architec-
ture of TinyOS. In the event-based architecture, only one main
loop executes event handlers according to received events, and
the handlers never preempt each other.

However, the event-based architecture causes difficulties in
performing hard real-time tasks and high programming com-
plexity. In a real-time system, a higher priority task must pre-
empt other tasks, but the event architecture forbids preemption
for its compactness and small overheads.

In the present paper, we show a compact hard real-time oper-
ating system called PAVENET OS. To realize the hard real-time
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feature, PAVENET OS is designed with a thread model and en-
abling preemption. The enabling preemption causes two prob-
lems. First, the preemption induces huge overheads for check-
ing task priorities and saving CPU context. Second, the pre-
emption induces a conflict management problem among tasks.

To reduce the preemption overheads, PAVENET OS uses a
characteristic of wireless sensor nodes: tasks can be catego-
rized as real-time tasks or best-effort tasks. PAVENET OS pro-
vides two kinds of multithreading, which are preemptive multi-
threading and cooperative one. The preemptive multithreading
is optimized for the real-time tasks with a CPU specific de-
sign, and the cooperative multithreading is optimized for the
best-effort tasks. To mitigate the conflict management prob-
lem, PAVENET OS uses another characteristic of wireless sen-
sor nodes: most conflicts occur between communication layers.
PAVENET OS provides a wireless communication stack for
hiding the exclusive controls to users.

The hard real-time feature can perform 100 Hz sensor sam-
pling while performing radio management tasks with 0.01%
jitter, whereas optimized TinyOS has 0.62% jitter. Addition-
ally, PAVENET OS realizes compactness and low overheads
that are comparable to those of TinyOS. For example, PAVE-
NET OS can implement Blink, which is a sample program in
TinyOS [9], on 63 bytes of RAM and 1,183 bytes of ROM,
whereas TinyOS implements Blink on 44 bytes of RAM and
1,428 bytes of ROM. PAVENET OS also can switch tasks in
23 cycles minimally.

The present study is not intended to show that PAVENET
OS is the best operating system. In fact, in contrast to highly
portable TinyOS, PAVENET OS sacrifices portability because
PAVENET OS has a design specific to Microchip PIC18. Lack
of portability is a significant problem. However, the results of
the present study imply that a better CPU design and operating
system design may exist for future wireless sensor networks.

The remainder of the present paper is organized as follows.
In the following section, we present the motivation for this re-
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search and discuss the difference between the event model and
the thread model. In Section 3, we provide the implementation
details for the PAVENET OS in three parts: a hard real-time
task scheduler, a best-effort task scheduler, and a wireless com-
munication stack. Section 4 presents an evaluation of the per-
formance of PAVENET OS. Section 5 discusses the relation-
ship between priority levels and task switch overheads. Sec-
tion 6 reviews related research, and conclusions are presented
in Section 7.

2. Requirements

Some applications in wireless sensor networks need to ob-
tain data of sufficient quality to have real scientific value, and
the applications include earthquake monitoring [10], volcano
monitoring [3], and structural health monitoring [4]–[6]. The
applications require high fidelity sampling. For example, earth-
quake monitoring requires precise time-synchronized 100 Hz
sampling, and tasks are periodically executed with strict dead-
lines [4],[10]. In addition, based on the success of TinyOS
which is an event driven operating system, we know that com-
pactness is an important factor when covering wide-area ap-
plications for wireless sensor networks because compactness is
strongly related to power consumption over the entire sensor
network.

The advantages of using either the event model or the thread
model have been discussed thoroughly [8],[11]–[14]. It is diffi-
cult to strictly categorize all operating systems as event models
or thread models, and there are many variations in program-
ming style among models. To simplify the discussion herein,
we define an event model in the manner of TinyOS [8],[15] and
a thread model as traditional time-sliced multithreading, such
as the POSIX thread. The event model has only one execu-
tion stream and forbids preemption among tasks: an event loop
waits for events, an event invokes a handler, and the event han-
dler is executed in run-to-completion. The thread model has
multiple independent execution streams, shared states, preemp-
tive scheduling, and synchronization schemes such as locks and
conditions.

2.1 Event Model

In wireless sensor network research, a number of operating
systems have been implemented with the event model, includ-
ing TinyOS [8], SOS [16], Contiki [14], and protothreads [17].
The event-based architecture has two advantages. First, the
user need not be concerned with conflict management because
all event handlers execute in a run-to-completion manner and
do not preempt each other. This feature also reduces context
switch overheads because all task switches are realized by func-
tion call. Second, event models can be implemented using lim-
ited resources because of their simple structure, which consists
of a memory stack, an event loop, and event handlers. This
simplicity also allows portability of the system.

However, this simplicity causes two problems. First, the
event model cannot perform hard real-time tasks. To support
hard real-time tasks, the system must allow preemption. How-
ever, the event model does not allow preemption because the
advantages are strongly related to the absence of preemption.
For example, earthquake monitoring requires radio physical
layer tasks and exact 100 Hz sensor sampling [4],[10]. The
radio physical layer task has a 26 μs deadline and cycle, and a

12.5 μs computation time. The precise 100 Hz sensor-sampling
task has a 10-ms cycle, a 2.2 μs computation time, and a 3.2 μs
deadline. While TinyOS is performing a radio physical layer
task, the sampling task cannot be executed until the radio phys-
ical layer task is finished. In fact, Kim et al. [6] struggled with
temporal jitter caused by logging interferences in sampling.
They succeeded to reduce the jitter with MicroTimer and turn-
ing off all unnecessary components on TinyOS. We note that
the MicroTimer breaks the simplicity of the event model be-
cause the MicroTimer is implemented inside an interrupt han-
dler. The implementation causes resource conflict problems.

Second, the event model has high programming complexity
because the event model has to divide a sequence of tasks into
multiple event handlers. With the words of Dunkels et al. [17]:
“an event-driven model does not support a blocking wait ab-
straction. Therefore, programmers of such systems frequently
need to use state machines to implement control flow for high-
level logic that cannot be expressed as a single event handler.”

To reduce the programming complexity, Dunkels et al. [17]
proposed a programming abstraction for the event model called
protothreads. Protothreads makes it possible to write an event
model in a thread-like style. However, protothreads still does
not support hard real-time tasks.

2.2 Thread Model

The thread model can support hard real-time tasks because
it allows preemption. Allowing preemption is not a sufficient
condition, but a necessary condition, to support hard real-time
tasks. For example, MANTIS is a time-sliced multithreading
operating system for wireless sensor networks, but does not
support hard real-time tasks [18]. In the thread model, the user
can also understand the control flow easily because he/she can
code tasks as if they dominate a CPU.

However, in contrast to the event model, the thread model
does not have a simple structure, and the user must consider
conflict management with shared data, and the task switch over-
heads are high because the thread model operating system has
to save the CPU context at every preemption point. In addition,
a memory stack is required for each execution stream. These
features increase the memory consumption of operating sys-
tems. For example, MANTIS occupies less than 500 bytes of
RAM and approximately 14 KB of ROM [18]. This is natural
because the thread model provides an intermediate layer be-
tween the hardware and the software, whereas the event model
is placed directly on the hardware.

We summarize the discussion about the event model and the
thread model in Table 1. Both models have advantages and
disadvantages. The event model is compact, low overheads,
and need not manage resource confliction. However, the event
model cannot handle hard real-time tasks and has high pro-
gramming complexity. The thread model can support hard real-
time tasks, and has lower programming complexity. However,

Table 1 Event model vs. thread model.

event model thread model
compactness © ×

low overheads © ×
conflict management © ×

hard real-time support × ©
programming complexity × ©
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the thread model is not compact, has high overheads, and need
manage resource confliction among tasks. The challenge is to
develop an operating system that has the following features:
hard real-time support, compactness, low overheads, and low
programming complexity.

3. PAVENET OS
We design a compact hard real-time operating system called

PAVENET OS with enabling preemption. As mentioned in
Section 2.2, the preemption induces preemption overheads
and a conflict management problem. To tackle the problems,
PAVENET OS provides three functions: a hard real-time task
scheduler, a best-effort task scheduler, and a wireless commu-
nication stack. The hard real-time task scheduler and the best-
effort task scheduler reduce task switch overheads with task
specific design. The wireless communication stack mitigates
the conflict management problem.

3.1 Hard Real-Time Task Scheduler

PAVENET OS provides a hard real-time task scheduler for
real-time tasks, and the real-time tasks have a task priority
and preempt lower priority tasks. The real-time tasks include
radio management, sensor sampling, and media access con-
trol. Although the task priority and the preemption causes task
scheduling/switching overheads, PAVENET OS performs real-
time tasks in low overheads because PAVENET OS aggres-
sively uses functions on PIC18, namely, dynamic priority levels
and a fast return stack.

PIC18 is a microcontroller developed by Microchip and has
several interrupt sources, e.g., timres, external ports, a Master
Synchronous Serial Port (MSSP), and a Universal Synchronous
Receiver Transmitter (USART). Each source is dynamically
assigned to a high priority level or a low priority level. High-
priority interrupt events can interrupt any low-priority tasks and
best-effort tasks. Low-priority interrupt events can interrupt any
best-effort tasks. PIC18 also has a fast return stack, which au-
tomatically saves the CPU context when an interrupt occurs. In
control registers, each interrupt has three bits to control their
operation: a flag bit, an enable bit, and a priority bit. The flag
bit indicates whether an interrupt event has occurred. The en-
able bit allows the program to execute an interrupt when the
flag bit is set. The priority bit selects high priority or low prior-
ity. For example, a timer0 interrupt has TMR0IF as a flag bit,
TMR0IE as an enable bit, and TMR0IP as a priority bit.

PAVENET OS uses the functions of PIC18 to develop a hard
real-time task scheduler with compactness and low overhead.
The hard real-time task scheduler provides a function pointer
to each interrupt source, and the pointers are:

void (*task_timer0)(void); //timer0

void (*task_timer1)(void); //timer1

void (*task_int1)(void); //external1

void (*task_int2)(void); //external2

void (*task_rc)(void); //UART

The user can add a hard real-time task via a system call
add_rtask(), and assigns a priority level and a function to
an interrupt source:

void add_rtask(uint8 isr_type,
uint8 priority,

void (*func)(void))
{

switch(isr_type){
case ISR_TMR0:

if(priority == ISR_HIGH)
TMR0IP = 1;

else if(priority == ISR_LOW)
TMR0IP = 0;

TMR0IE = 1;
task_tmr0 = func;
break;

case ISR_TMR1:
·
·
·

PIC18 has a high-priority vector at ROM address 0008h and a
low-priority vector at ROM address 0018h, and they are coded
as:

0008h: call isr_high
000Ah: nop

·
·
·

0018h: call isr_low
001Ah: nop

The isr_high() is coded as:

void isr_high(void)
{

if(TMR0IP && TMR0IE && TMR0IF){
TMR0IF = 0;
task_timer0();

}

if(TMR1IP && TMR1IE && TMR1IF){
TMR1IF = 0;
task_timer1();

}

if(INT1IP && INT1IE && INT1IF){
INT1IF = 0;
task_int1();

}
·
·
·

The isr_row() is coded as:

void isr_low(void)
{

if((TMR0IP == 0) && TMR0IE && TMR0IF){
TMR0IF = 0;
task_timer0();

}

if((TMR1IP == 0) && TMR1IE && TMR1IF){
TMR1IF = 0;
task_timer1();

}

if((INT1IP == 0) && INT1IE && INT1IF){
INT1IF = 0;
task_int1();

}
·
·
·

As shown above, PAVENET OS allows the user to place multi-
ple tasks in the same priority level, and each task is executed as
a run-to-completion thread.

In PAVENET OS, each real-time task corresponds to each in-
terrupt vector. Therefore, there are no software transaction in
task switching and task scheduling. PAVENET OS decides pri-
ority of real-time tasks according to their deadlines, and multi-
ple tasks can have same priority: the low priority tasks must
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not have smaller deadline than the high priority tasks. The
real-time task scheduling is categorized into a class of deadline-
monotonic scheduling [19],[20]. Deadline-monotonic schedul-
ing can assign optimized priority to guarantee a deadline in a
single CPU [19].

We can test the sufficient condition of the schedulability with
deadline monotonic scheduling [19],[20]. The following is a
schedulability test presented in [20].

All tasks are characterized by

Ci ≤ Di ≤ Ti

where Ci is the computation time, Di is the deadline,
and Ti is the period of task τi. In addition, task τ1

represents the highest priority task and τn, the lowest
priority task, respectively. Then, schedulability test
is given by:

∀i : 1 ≤ i ≤ n :
Ci

Di
+

Ii

Di
≤ 1 (1)

where Ii is a measure of higher priority tasks interfer-
ing with the execution of τi:

Ii =

i−1∑
j=1

⌈
Di

T j

⌉
C j. (2)

If a task τi satisfies equation (1), the task τi is schedu-
lable.

In Equations (1) and (2), the scheduler has n priority levels
and each priority corresponds to a task. However, PAVENET
OS has only two priority levels and can assign multiple tasks
to a priority level. Therefore, the schedulability test for PAVE-
NET OS is as follows.

Suppose there are n high-priority tasks. The schedulability
test for high-priority tasks is given by:

Ci

Di
+

Ii

Di
≤ 1 (3)

where Ii is a measure of tasks having the same priority interfer-
ing with the execution of τi:

Ii =

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

⌈
Di

T j

⌉
C j

⎞⎟⎟⎟⎟⎟⎟⎠ −
⌈

Di

Ti

⌉
Ci

=

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

⌈
Di

T j

⌉
C j

⎞⎟⎟⎟⎟⎟⎟⎠ −Ci.

Therefore, Equation (3) is:

Ci

Di
+

Ii

Di
=

Ci

Di
+

(∑n
j=1

⌈
Di

T j

⌉
C j

)
−Ci

Di

=

n∑
j=1

⌈
Di

T j

⌉
C j

Di
≤ 1. (4)

If a task τi satisfies equation (4), the task τi is schedulable.
Next, we show the schedulability test for low-priority tasks
τk. When there are n high-priority tasks and m low-priority
tasks, the schedulability test is given by:

Table 2 Task control block. A task control block in PAVENET OS uses
only 40 bits per thread.

name size meaning
tid 8 bit thread ID
state 8 bit thread state
pc 16 bit program counter

sleep_time 8 bit time to wake

Table 3 Task control functions. PAVENET OS provides seven system
calls for task management.

function name transaction setting state
add_task(funcname) add task to scheduler execute
os_yield() yield control execute
sleep(time) sleep time sec sleep
sig_wait() wait signal wait

suspend_task(pid) let pid to wait execute
signal_task(pid) let pid to execute execute
kill_task(pid) let pid to be dead execute

Ck

Dk
+

Ik

Dk
≤ 1

where Ik is the measure of all tasks interfering with the execu-
tion of τk:

Ik =

⎛⎜⎜⎜⎜⎜⎝
n+m∑
l=1

⌈
Dk

Tl

⌉
Cl

⎞⎟⎟⎟⎟⎟⎠ −
⌈

Dk

Tk

⌉
Ck

=

⎛⎜⎜⎜⎜⎜⎝
n+m∑
l=1

⌈
Dk

Tl

⌉
Cl

⎞⎟⎟⎟⎟⎟⎠ −Ck.

This gives the schedulability constraint:

Ck

Dk
+

Ik

Dk
=

Ck

Dk
+

(∑n+m
l=1

⌈
Dk

Tl

⌉
Cl

)
−Ck

Dk

=

n+m∑
l=1

⌈
Dk

Tl

⌉
Cl

Dk
≤ 1. (5)

If a task τk satisfies equation (5), the task τk is schedulable.

3.2 Best-Effort Task Scheduler

PAVENET OS performs hard real-time tasks with preemp-
tion, as described in Section 3.1, and other tasks are performed
with a best-effort task scheduler. The best-effort tasks include
hop-by-hop routing, delay writing to flash memory, and reply-
ing to sensor data query.

We develop the best-effort task scheduler with the thread
model and add three limitations for compactness and low over-
heads to the threads. First, these threads only switch context co-
operatively. Cooperative task switching eliminates the need for
conflict management and only preserves a program counter as
CPU context. Second, these threads can only yield the top level
of a function. Although we can yield anywhere in the function
if the scheduler preserves the entire call stack, we do not use
this approach because it consumes a great deal of memory and
computation time. Third, these threads do not use stack mem-
ory. Because of this limitation, CPUs need not have a stack
memory. Although PIC18 has a call stack, it does not have a
stack memory, and a heap memory is assigned to variables at
compilation time. Because of these limitations, these threads
forbid reentrance and duplication.

Table 2 represents a task control block on the best-effort task
scheduler. The block, tid is the thread identifier, which the
scheduler allocates to a thread when the thread is created. The
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Fig. 1 Wireless communication stack.

block, state is the state of the thread. These threads have four
states: dead, execute, sleep, and wait. These states are tran-
sited with task management functions as shown in Table 3. The
block, pc is a program counter at the current executing thread,
and sleep_time represents a time to wake. PAVENET OS
ticks jiffies, and the scheduler increments jiffies every
100 ms.

Table 3 lists the task management functions. Since PAVE-
NET OS has the limitations mentioned above, tasks can be
switched with very simple code:

void os_yield(void)
{

pcounters[current_task] = TOS;
asm("pop");

}

where TOS is the program counter.

3.3 Wireless Communication Stack

Preemption caused by hard real-time tasks causes a conflict
management problem. To reduce user fatigue caused by conflict
management, we use a characteristic of wireless sensor nodes:
most conflicts occur between communication layers. For ex-
ample, when a physical layer receives a packet, the physical
layer accesses a receive buffer in a media access control (MAC)
layer, and the MAC layer also accesses the receive buffer to run
a MAC protocol. PAVENET OS hides these exclusive controls
in the wireless communication stack, and the user need not con-
sider conflict management. The wireless communication stack
also realizes modularity at each communication layer, and the
user can easily develop various communication protocols ac-
cording to application demands.

Figure 1 shows the wireless communication stack, includ-
ing a physical layer, a MAC layer, a network layer, a socket
layer, and an application layer. To exchange data among lay-
ers efficiently, PAVENET OS provides a buffer management
mechanism called pbuf, which is a lightweight version of BSD
mbuf [21]. Since the pbuf assigns a small identifier to a buffer,
each layer only needs to copy small identifiers. Pbuf also pro-
vides APIs, which hides exclusive controls for the buffer man-
agement in pbuf. The APIs for pbuf are:

uint8 get_new_pbuf(void);

byte *get_pbuf_next(uint8 index, uint8 size);

byte *get_pbuf_head(uint8 index);

uint8 release_pbuf(uint8 index);

Fig. 2 PAVENET modules.

uint8 get_pbuf_size(uint8 index);

3.4 Operation Example

In this section, we show an example operation of hard real-
time tasks, best-effort tasks, and the wireless communication
stack. In this example, a physical layer task and a MAC layer
task are implemented as hard real-time tasks, and a network
layer task is implemented as a best-effort task on a PAVENET
module which is shown in Fig. 2. The physical layer task is
invoked by an external interrupt which is associated with a data
clock port on CC1000. When CC1000 is running at 19.2 kbps,
the period of interrupt is about 52 μs, which corresponds to 1
bit reception. When the physical layer task finishes to receive
1 packet of bits, the packet is inserted to a MAC layer receive
queue with up2mac() by the physical layer task. If the MAC
layer task is 10 ms slotted TDMA, the MAC layer task is exe-
cuted at 10 ms intervals by timer0. The MAC layer task con-
trols physical layer’s sending and receiving state, and inserts a
packet to network layer’s receive queue with up2net() if the
MAC layer’s receive queue has a packet. The network layer
task is implemented as a best-effort task, and routinely checks a
receive queue with sleep(). If the receive queue has a packet,
the network layer task processes the packet: routing, passing to
an application layer, and so on.

Each hard real-time task can be characterized with its com-
putation time C, its deadline D, and its period T . If all hard
real-time tasks satisfy equation (4) and (5), PAVENET OS guar-
antees the execution of the hard real-time tasks even when there
is frequent packet reception. However, the network layer task,
which is a best-effort task, might fail to process some pack-
ets when there is frequent packet reception. The fail induces
packet loss. In above example, when the MAC layer task calls
up2net(), the packet is deleted if the network layer’s receive
queue is full.

4. Evaluation

To evaluate PAVENET OS, we compare the precision of
the hard real-time task scheduler, the compactness, the execu-
tion overheads, and the programming complexity to those of
TinyOS 1.10 running on MICA2 [22]. PAVENET OS is im-
plemented with the HI-TECH PICC-18 compiler and run on
PAVENET modules.

Table 4 lists the specifications of PAVENET modules and
MICA2, and PAVENET modules are shown in Fig. 2. PAVE-
NET modules and MICA2 have the same level of equipment.
PAVENET modules have PIC18LF4620 as a CPU and TI
CC1000 as a radio module. The operating frequency of the
CPU is 20 MHz, but the number of instructions-per-second is 5
MIPS because PIC18LF4620 performs an instruction per four
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Table 4 Evaluated sensor nodes.

PAVENET module MICA2

CPU PIC18LF4620 ATmega128L
frequency 20 MHz 7.4 MHz

instruction per second 5 MIPS 7.4 MIPS
wireless module CC1000 CC1000

wireless frequency 315 MHz 315 MHz
wireless modulation FSK FSK

power voltage DC3V DC3V
current (receiving) 30 mA 30 mA

current (sleep) 0.3μA 30μA
communication rate 38.4 kbps 19.2 kbps

Table 5 Hard real-time performance.

PAVENET OS
max min jitter

Sampling 10.001 ms 10.000 ms 0.001 ms
Sampling + RF 10.001 ms 10.000 ms 0.001 ms

TinyOS (default)
max min jitter

Sampling 9.764 ms 9.763 ms 0.001 ms
Sampling + RF 11.735 ms 7.794 ms 3.941 ms

TinyOS (optimized)
max min jitter

Sampling 10.003 ms 10.000 ms 0.003 ms
Sampling + RF 10.062ms 10.000 ms 0.062 ms

nano-RK
max min jitter

Sampling 9.846 ms 9.683 ms 0.164 ms
Sampling + RF 12.740 ms 6.783 ms 5.958 ms

clock cycles. The wireless communication speed of PAVENET
modules is 38.4 kbps, but we changed it to 19.2 kbps in or-
der to allow fair comparison with MICA2. MICA2 has Atmel
ATmega128 as a CPU and CC1000 as a radio module. The
operating frequency of the CPU is 7.4 MHz, and the number
of instructions per second is 7.4 MIPS because ATmega128
performs one instruction per one clock cycle. Although AT-
mega128 and PIC18LF4620 have different architectures, they
target the same application area. We note that TinyOS can
port to PAVENET modules, but PAVENET OS cannot port to
MICA2 because of its CPU-specific architecture.

4.1 Hard Real-Time Tasks

To evaluate hard real-time tasks, we assume tasks in earth-
quake monitoring [4],[10],[23] as an actual application for
wireless sensor networks. Earthquake monitoring requires pre-
cise 100 Hz sampling with radio communication because each
sampling must be synchronized among sensor nodes. The eval-
uation results of sampling jitter can adapt to other frequencies
because sampling jitter is independent of sampling frequency.

The sampling jitter is calculated with maximum and mini-
mum intervals of the sampling. The fluctuation of the intervals
is caused by the fluctuation of task switch overheads and the
critical section period of other tasks. The distribution of the in-
tervals depends on sampling rate. However, the sampling jitter
does not depend on sampling rate because the maximum and
minimum intervals can be derived from the maximum fluctua-
tion of task switch overheads and the maximum critical section
period of other tasks, which are independent of sampling fre-
quency.

Table 6 Kernel footprint.

module RAM (byte) ROM(byte)

task scheduler 29 490
wireless communication stack 628 930

total 657 1,420

Table 5 shows evaluation results. ‘Sampling’ is the sen-
sor node performing only a 100 Hz sampling task, and ‘Sam-
pling + RF’ is the sensor node performing a 100 Hz sampling
task while receiving packets from another node, which sends
a packet every 50 ms. All of the packet loss rates were 0%.
‘TinyOS (default)’ uses the Timer component [24] for sam-
pling, and ‘TinyOS (optimized)’ uses the MicroTimer. The
optimized TinyOS assumes a same setting with [6]. As men-
tioned in Section 2.1, the use of the MicroTimer breaks simplic-
ity of the event model. The ‘nano-RK’ runs on MICAz because
nano-RK does not support MICA2. To sample precisely at 100
Hz, the sensor node must generate precise 10 ms intervals. We
measured the intervals 2,000 times and obtained the maximum
value, the minimum value, and the jitter.

The results indicate that PAVENET OS realizes 100 Hz sam-
pling much more precisely than TinyOS, as shown in Table 5.
The default TinyOS cannot perform precise 100 Hz sampling,
even if performing only the sampling task. The Timer com-
ponent on TinyOS adjusts the timer firing timing between 9-
10 ms. Therefore, when the default TinyOS samples with ra-
dio communication, the sampling error becomes significant be-
cause the adjustment is tumbled by the radio communication
tasks. The optimized TinyOS can perform precise 100 Hz sam-
pling with 0.003 ms or 0.03% jitter, if performing only the sam-
pling task. The jitter becomes significant at 0.062 ms or 0.62%,
when the optimized TinyOS performs the sampling task with
radio communication. On the other hand, PAVENET OS can
always sample precisely at 100 Hz, even with radio communi-
cation, and the jitter is much smaller at 0.001 ms or 0.01%.

The results also indicate that nano-RK is not appropriate
for precise 100 Hz sampling. The nano-RK has larger jitter
than ‘TinyOS (default)’ even if performing only the sampling
task. The huge jitter is caused by software implementation
of a hard real-time scheduler. The software implementation
induces scheduling and task switch overheads. Additionally,
when nano-RK samples with radio communication, the sam-
pling jitter becomes significant because the radio physical layer
task in nano-RK’s wireless protocol stack heavily uses critical
sections.

As described in [25], the sampling jitter induces a sensing
error. The requirement for the sensing error reduction is dif-
ferent among sensor network applications. For example, earth-
quake monitoring, which is our main application target, needs
less than 1 ms jitter [23]. ‘TinyOS (default)’ and ‘nano-RK’ do
not satisfy 1 ms jitter, but ‘PAVENET OS’ and ‘TinyOS (opti-
mized)’ satisfy 1 ms jitter. In view of other applications, lower
sampling jitter indicates a wider application area.

4.2 Compactness

We show that PAVENET OS has compactness comparable to
that of TinyOS. To evaluate the compactness, we measure the
RAM sizes and ROM sizes of PAVENET OS and TinyOS.

First, we measure the footprint of the scheduler and the wire-
less communication stack, as shown in Table 6. The task sched-
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Table 7 Footprint size on the sample applications.

PAVENET OS TinyOS
RAM ROM RAM ROM

Blink (byte) 63 1,183 44 1,428
BlinkTask (byte) 64 1,271 45 1,452
CntToLeds (byte) 64 1,209 46 1,570
CntToRfm (byte) 676 11,336 388 9,918

CntToLedsAndRfm (byte) 676 11,366 388 10,096

uler occupies 29 bytes of RAM and 490 bytes of ROM when
there are no connected libraries and the maximum number of
tasks is five. Extra 5 bytes of RAM per task are required when
the user needs to increase the maximum number of tasks. Typ-
ically, the thread model has a smaller number of tasks than the
event model, because the user uses one task for a sequence of
tasks in the thread model. According to [8], TinyOS requires
47 bytes of RAM and 473 bytes of ROM when there are no
connected modules. Therefore, the PAVENET OS scheduler
footprint is as small as that of TinyOS. The wireless commu-
nication stack consumes 628 bytes of RAM and 930 bytes of
ROM. The consumed RAM size is not small because the wire-
less communication layer has many buffers for receiving and
sending in the physical layer, pbuf, and queues in the layers,
which consume a great deal of memory.

Next, we measured the size of the footprint for sample appli-
cations. We implemented the applications provided by TinyOS,
namely, Blink, BlinkTask, CntToLeds, CntToRfm, and Cnt-
ToLedsAndRfm [9]. Blink and BlinkTask toggle an LED on the
sensor node every second. The difference between Blink and
BlinkTask is how the task is implemented. Blink implements
timer handling and LED toggling in a single task. BlinkTask
implements timer handling and LED toggling in two different
tasks, and the timer handling task signals the LED toggling
task. CntToLeds increments a counter and sends the counter
value to the LEDs on the sensor node. CntToRfm increments
a counter and sends the counter value via radio. CntToLed-
sAndRfm is the combination of CntToLeds and CntToRfm. Cnt-
ToLedsAndRfm increments a counter, sends the counter value to
LEDs on the sensor node, and sends the counter value to other
sensor nodes via radio.

Table 7 compares the RAM size and the ROM size for appli-
cations on PAVENET OS and TinyOS. The results indicate that
PAVENET OS has comparable compactness to TinyOS. PAVE-
NET OS uses more RAM and less ROM than TinyOS when the
applications do not have radio communication, and the applica-
tions are Blink, BlinkTask, and CntToLeds. The reason for this is
as follows. TinyOS divides one sequence of tasks to many small
run-to-completion tasks. The division allows tasks to reuse the
RAM area, but occupies more ROM area. On the other hand,
PAVENET OS uses one task for a sequence of tasks, and this
unification consumes RAM because tasks cannot reuse RAM.
However, the unification saves ROM. When the applications
have radio communication such as CntToRfm or CntToLedsAn-
dRfm, PAVENET OS requires more RAM and more ROM than
TinyOS because PAVENET OS has the wireless communica-
tion stack, as shown in Table 6.

4.3 Overhead

Figure 3 shows the task switch overheads for various tasks,
and the tasks are the net task and the user task as best-effort

Fig. 3 Task switch overheads.

Table 8 Average execution cycles on sample applications not including
radio communication.

PAVENET OS TinyOS

Blink (cycle) 8.5 19.5
BlinkTask (cycle) 134.5 123.5
CntToLeds (cycle) 147.0 155.5

Table 9 Average execution times on sample applications including radio
communication.

PAVENET OS TinyOS

CntToRfm (ms) 17.0 17.1
CntToLedsAndRfm (ms) 16.9 17.2

tasks, the mac task as a low-priority real-time task, and the phy
task as a high-priority real-time task. The low-priority task can
preempt best-effort tasks in 66 cycles. The high-priority task
can preempt best-effort tasks or low-priority tasks in 23 cycles.
When a best-effort task yields the CPU, the best-effort task
switches to another best-effort task in 92 cycles. Task switch
overheads are relatively low. For example, MANTIS switches
tasks in approximately 400 cycles [18], nano-RK, in approxi-
mately 333 cycles (45 μs on FireFly) [26], and TinyOS, in 51
cycles [8], respectively.

PAVENET OS has low overheads, on the same level as
TinyOS, when implementing the same sample applications pro-
vided by TinyOS. These applications are described in Sec-
tion 4.2. First, we measured the average execution cycle from
the timer being fired until the end of the sequence of tasks on
Blink, BlinkTask, and CntToLeds, as shown in Table 8. The av-
erage cycle was calculated from 100 execution cycles. We use
“cycle” as the unit because PAVENET modules and MICA2
have different clock frequencies. In Blink and CntToLeds,
PAVENET OS is slightly faster than TinyOS because TinyOS
has small overheads at joints between modules. In BlinkTask,
PAVENET OS is slightly slower than TinyOS and the result
corresponds to the task switch overheads.

Second, we measured the average execution time from the
timer being fired until the end of packet transmission on Cnt-
ToRfm and CntToLedsAndRfm, as shown in Table 9. We use
time, rather than cycles, as the unit because the execution time
is strongly related to the packet length and communication
overheads. Although PAVENET OS has the wireless commu-
nication stack and PAVENET modules run slower MIPS than
TinyOS, the results are almost the same. The results represent
the wireless communication stack on PAVENET OS has rela-
tively low overheads.



SICE JCMSI, Vol. 5, No. 1, January 2012 31

4.4 Programming Complexity

To evaluate the programming complexity of PAVENET OS,
we count the lines in sample application source codes as com-
pared to TinyOS. We excluded blank lines and comment lines
from the count. We also excluded system codes such as a sched-
uler and timers. For example, we did not count the Main com-
ponent and the Timer component in TinyOS. It is difficult to
evaluate programming complexity simply by counting the num-
ber of lines of code. TinyOS reduces programming complexity
with the component-oriented application design of nesC [15]
and provides a rich collection of software components. How-
ever, we do not have a perfect method to evaluate programming
complexity [27]–[33]. We believe the number of lines repre-
sents one aspect of programming complexity. At least, a small
number of lines make it easier for the user to understand what
is going on in the source code.

PAVENET OS can implement the sample applications in
shorter code than TinyOS, as shown in Table 10, because
PAVENET OS can implement a sequence of tasks into one task.
The code size difference tends to be significant when the num-
ber of components increases in TinyOS, because nesC, which
TinyOS uses, needs to implement a component with multiple
event handlers.

The number of users can also the criteria for program-
ming complexity. Some research projects, including sensor-
actuator cooperation services [34],[35], earthquake monitor-
ing [10],[36], context-aware services [37],[38], battery-less
sensor networks [39], and a collision detection mechanism [40],
have used PAVENET OS. At present, the PAVENET OS com-
munity is very small compared to the TinyOS community.

5. Discussion

Although traditional hard real-time operating systems, such
as nano-RK, support many priority levels, PAVENET OS only
supports two priority levels. In this section, we discuss the re-
lationship between priority levels and task switch overheads.

Sensor nodes have two categories of hard real-time tasks.
The first category consists of the tasks whose deadlines are al-
most equal to the computation time of the tasks (D ≈ C). The
D ≈ C tasks have to be executed just after task requests is-
sued. The examples of the tasks are a sensor sampling task and
a TDMA timing control task. The execution of a D ≈ C task is
guaranteed only if the task has the highest priority. If there are
two or more D ≈ C tasks, the operating system cannot guaran-
tee their deadlines due to equations (4) and (5). The increase of
priority levels cannot solve the problem since equations (1) and
(2) should hold. The only solution is an exclusive execution of
the D ≈ C tasks.

The second category consists of the tasks whose deadlines
are almost equal to the period of the tasks (D ≈ T ). The D ≈ T
tasks have to finish until next task request is coming. The ex-
amples of the D ≈ T tasks are a radio physical layer task, a

Table 10 Code size in sample applications.

PAVENET OS TinyOS

Blink (line) 23 45
BlinkTask (line) 33 54
CntToLeds (line) 34 94
CntToRfm (line) 38 112

CntToLedsAndRfm (line) 39 161

UART task, and sensor data processing tasks. PAVENET OS
can guarantee the deadline of these tasks if the tasks satisfy
equations (4) and (5). The increase of priority levels might im-
prove processor usability if task switch overheads are small.

The two priority levels are sufficient for our main application
target which is earthquake monitoring [23]. Increase of priority
levels improves processor usability. However, practically, in-
crease of priority levels does not improve processor usability,
if task switch overheads are large [41]. For example, a 40 μs
period and 40 μs deadline task cannot be guaranteed by nano-
RK [26] which has 45 μs task switch overheads and 64 priority
levels, and can be guaranteed by PAVENET OS which has 4.6
μs task switch overheads and only two priority levels. If there
is new CPU which supports more dynamic priority levels than
PIC18, we should realize many priority levels because they to-
gether with small task switch overheads improve processor us-
ability.

6. Related Research

There are a number of operating systems for wireless
sensor nodes, including TinyOS [8],[15], SOS [16], Con-
tiki [14], nano-RK [26], MANTIS [18], protothreads [17], and
t-kernel [42]. Most of these operating systems are designed
with the event model. As mentioned in Section 2, the event
model cannot support hard real-time tasks, and has high pro-
gramming complexity.

TinyOS [8] is the de facto standard operating system for wire-
less sensor nodes. TinyOS was designed with the event model,
and so does not support hard real-time tasks and has high pro-
gramming complexity. TinyOS attempts to reduce the program-
ming complexity through a new event-driven specific language
called nesC [15], which enhances reusability of components.
However, this solution means that the user has to learn a new
language.

SOS [16] is another event model operating system. SOS
has a loadable programming module feature, whereas TinyOS
has a statically linked system image. The loadable module is
lightweight and can be written in C. In SOS, the user can up-
date modules after the sensor nodes are deployed. However,
SOS cannot support hard real-time tasks and has high program-
ming complexity.

Contiki [14] is an event model operating system. To reduce
the programming complexity, as an option, Contiki can support
time-sliced preemptive multithreading by assigning a memory
stack to each thread. The memory assignment consumes com-
putational resources. In addition, the threads destroy the sim-
plicity of event models, e.g., the user must manage resource
confliction. Moreover, Contiki cannot support hard real-time
tasks even if the user uses the threads.

Protothreads [17] have an implementation similar to that of
the cooperative task scheduler of PAVENET OS. Protothreads
is an extension of the event model designed to reduce the pro-
gramming complexity. The event model must divide a task into
multiple run-to-completion functions. Protothreads provide a
conditional blocking wait statement to the event model. The
user can then write a program in a thread-like style. When us-
ing the conditional blocking wait, the user inserts PT_BEGIN
and PT_END at the top and the bottom respectively, of the event
handler. Protothreads reduce the programming complexity of
the event model, but does not solve all of the problems in the
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event model. In particular, protothreads cannot support hard
real-time tasks.

The nano-RK [26] is the most closely related work to
PAVENET OS. It is a preemptive multitask operating sys-
tem supporting real-time tasks. Additionally, nano-RK is more
portable than PAVENET OS. However, nano-RK has more con-
text switch overheads than PAVENET OS because nano-RK has
to preserve CPU context by software. Nano-RK needs several
dozens of μs for task switching whereas PAVENET OS needs
several μs.

Like PAVENET OS, MANTIS [18] is a thread model operat-
ing system. The difference between them is the implementation
of the thread model. MANTIS uses time-sliced multithread-
ing, whereas the threading of PAVENET OS is not time-sliced.
To realize time-sliced multithreading, MANTIS assigns a stack
memory for each task. Therefore, MANTIS consumes more
RAM than PAVENET OS. Furthermore, MANTIS does not
support hard real-time tasks.

T-kernel [42] is also a thread model operating system, and
provides virtual memory and preemptive scheduling. Since the
preemptive scheduling has 16 priority levels, the t-kernel might
be able to support hard real-time tasks. However, it is not eval-
uated its schedulability, hard real-time performance, and over-
heads [42]. In addition, t-kernel does not provide any mecha-
nism to hide exclusive controls like the wireless communication
stack on PAVENET OS.

7. Conclusion

The present paper has described PAVENET OS, a compact
hard real-time operating system for wireless sensor nodes. It
can be implemented on the same amount of computational re-
sources as TinyOS, and, unlike TinyOS, PAVENET OS sup-
ports hard real-time tasks and has low programming complex-
ity. In addition, since a wireless communication stack is pro-
vided, the user need not consider the exclusive controls caused
by hard real-time tasks. The results of the present study im-
ply that hardware support by CPU can extend the functions of
an operating system without a loss of compactness. For future
wireless sensor nodes, it may be necessary to reconsider the
balance between hardware and software.

The authors are currently working on the integration of a
CPU design and an operating system design for ultra low-power
wireless sensor networks [43]. Ekanayake et al. have already
succeeded to implement an ultra low-power processor using
software/hardware co-design based on the event model [44].
The authors believe that designing a CPU based on the thread
model, such as a many-core design, also dramatically reduces
energy consumption and covers a wider range of applications
for future wireless sensor networks.
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