
A Dynamic Device Driver for Real-space Programming in
Ubiquitous Computing Environment

Makoto Suzuki, Shunsuke Saruwatari, Hiroyuki Morikawa, Tomonori Aoyama
The University of Tokyo

{makoto,saru,mori,aoyama}@mlab.t.u-tokyo.ac.jp

ABSTRACT
In the ubiquitous computing environment, a service descrip-
tion that coordinates sensors and actuators in low power
consumption will be an important element. Based on this
standpoint, we are developing a new service coordination
model that precludes semantics. This paper describes a dy-
namic loadable device driver manager designed based on this
service coordination model.

1. INTRODUCTION
Recent advances of MEMS and semiconductor technology

will enable us to integrate a radio frequency circuit, a pro-
cessor and sensors/actuators into a single-chip. In the near
future, it is expected that even clocks, doors, bells and lights
have computing function and wireless communication func-
tion. For the environment like this, a service description to
coordinate sensors and actuators in low power consumption
will be an important element. From this viewpoint, we are
developing new network architecture ANTH, which includes
wireless communication protocol and user interface based on
a service coordination model that precludes semantics. The
following describes the Dynamic Device Driver. Dynamic
Device Driver is a dynamic loadable device driver manager
that hides device-dependent implementation, based on this
service coordination model.

2. ANTH
We took notice of the simplicity of sensors and actuators,

and introduced Bind Control Model, a service coordination
model that precludes semantics like kinds of data, to ANTH.
Fig.1 describes Bind Control Model. In Bind Control Model,
all device functions are abstracted into event, action or con-
troller. An event is what a sensor can detect the change of
state, and an action is a function which an actuator can do.
A controller is a function like a baton to bind an action to an
event, and a controller can construct all services in ANTH.

The event and action that are bound by controller have
same ID. The operations of controller are only to get ID from
and to set ID to an event or an action, and it is the key of
Bind Control Model that a user can coordinate events and
actions by these simple operations. We designed an user in-
terface, a computer architecture and a network architecture
of ANTH based on this service coordination model. In this
way, ANTH achieves a service coordination framework that
is simple, flexible, low power consumption and autonomous-
decentralized.

3. DYNAMIC DEVICE DRIVER
To realize ANTH, the feature that abstracts device-dependent

implementation to ID is required. And, we aim at dynamic
addition of functions in ANTH from the viewpoint that users
will desire to download new software to embedded devices
when they have network reachability. We introduced Dy-
namic Device Driver, a manager of device drivers for low

logical link

controller

get address

event propagation

set address

get address

address

event

address

action

addressevent action

Figure 1: Bind Control Model

driver manager

action1

action2

action3

event driver

event1

event2

event3

action tableevent table

add new
action

replace new
event driver

action1 = address1
action2 = address2
action3 = address3

event1 = address4
event2 = address5
event3 = address6

Figure 2: Dynamic Device Driver

power consumption devices, to ANTH. By Dynamic Device
Driver, a user can download new device drivers from the In-
ternet, and add new functions to devices according to the
user’s preference.

3.1 Design and Implementation
Fig.2 shows a brief overview of Dynamic Device Driver.

Dynamic Device Driver consists of an event driver，a driver
manager，action modules. An action module is a software
module that corresponds with action in Bind Control Model,
and this is added to a device from a control terminal, which
is implemented controller in Bind Control Model on. An
event driver is a software module that has several events in
Bind Control Model, and issues an event depending on the
situation. A driver manager manages correspondences of
each actions, events and IDs of Bind Control Model.

To implement Dynamic Device Driver, a dynamic load-
ing framework of software modules for low power comsump-
tion devices is required. Several means of dynamic loading
of software modules for low power consumption devices are
proposed for wireless sensor networks[1][2]. Though, it is
difficult to adopt these frameworks to ANTH without mod-
ification. It is because wireless sensor networks work in
a very specific architecture and the utilization of software
framework of wireless sensor networks places a burden on
developers.

In these viewpoints, we implemented a dynamic loading
framework based on Bind Control Model for low power con-
sumption devices. We utilized ANTH Modules (fig.3) devel-

3 cm

Figure 3: ANTH Module

Stack

Pointer

RAM

Program

Counter

CODE

Interpret

Verify

Execute

Figure 4: Virtual Machine

oped by us for implementation as hardware platform. Tab.1
shows the specification of ANTH Module．We designed that
Dynamic Device Driver uses a virtual machine as an execu-
tion engine because we think that a protection feature is re-
quired when dynamic loading of software modules externally
is allowed. We put verify phase in sequence of virtual ma-
chine execution as fig.4. This enables protection of memory
or other hardware resource in 1-chip microcontroller without
hardware protection feature.

4. PRELIMINARY EVALUATION
To evaluate Dynamic Device Driver, we prepared three

modules. Module1 is a module that consists of only empty
for loop. Module2 is a module that outputs random value
to the general purpose I/O. Module3 is a module that sends
a message through 9,600 bps UART. For these three mod-
ules, we measured the performance and compared with the
performance of the corresponding native code. Tab.2 shows
the modules’ sizes and the performance ratios.

4.1 Performance
Tab.2 shows the ratios of the execution performance on

the virtual machine to that of corresponding native code.
About module1, the performance ratio is about 34.7. It in-
dicates that the performance is very slow compared with
that of corresponding native code when a module consists
of fine granularity virtual instructions. About module2, the
performance ratio is about 1.28. It shows that complex vir-

Table 1: ANTH Module Specification
Microchip PIC18LF4620

CPU RAM : 4 KByte
ROM : 64 KByte

Wireless ChipCon CC1000

I/O UART, GPIO, I2C
Peripherals Four LEDs, Real Time Clock,

External EEPROM (16 KByte)

Table 2: Preliminary Evaluation
Module Size Performance Ratio

Module1 26 Byte 1:34.7
Module2 3 Byte 1:1.28
Module3 29 Byte 1:1.01

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 9600 19200 28800 38400 48000 57600 67200 76800 86400 96000 105600 115200

E
ff

ec
t T

hr
ou

gh
pu

t[
bp

s]

Theory Throughput[bps]

Real Machine
Virtual Machine

Figure 5: UART Effect Throughput

tual instructions like rand() call can reduce the overhead of
interpretation of virtual instructions to a large extent rela-
tively. About module3, the performance ratio is about 1.01.
Because module3 includes block instruction that transmits
data through slow 9,600 bps UART, the interpretation of
virtual machine does not become a bottleneck.

We evaluated module3 in detail. We changed the logical
throughput and measured the change of the effect through-
put. Fig.5 shows the effect throughput of UART changing
the logical throughput of UART to 9,600 bps, 19,200 bps,
57,600 bps and 115,200 bps. When the logical throughput
is 115,200 bps, the effect throughput ratio is 1.27 because
the interpretation of virtual machine becomes a bottleneck.

5. CONCLUSION AND FUTURE WORK
This paper has described the design, implementation and

preliminary evaluation of Dynamic Device Driver, a man-
ager of device drivers designed based on new service coor-
dination model that can coordinate sensors and actuators
in low power consumption. Dynamic Device Driver enable
a user to add new functions to devices according to the
user’s preference. Our evaluations shows that application
specific instruction set decrease the overhead of interpreta-
tion greatly and Dynamic Device Driver based on our virtual
machine can execute modules almost as fast as native code.
Currently, we are designing the instruction set specialized
in ANTH.

6. ACKNOWLEDGEMENT
This work is supported by Ministry of Internal Affairs and

Communications.

7. REFERENCES
[1] C. C. Han, R. Kumar, R. Shea, E. Kohler, and M. B.

Srivastava. A Dynamic Operating System for Sensor
Nodes. In Proceedings of the 3rd International
Conference on Mobile Systems, Applications, and
Services (MobiSys’05), pages 163–176, Seattle,
Washington, June 2005.

[2] P. Levis and D. Culler. Mate: A Tiny Virtual Machine
for Sensor Networks. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems
(ASPLOS’02), pages 85–95, San Jose, California,
October 2002.

