
Design and Implementation of OpenFlow Networks
for Medical Information Systems

Yusuke Iwasaki †, Satoru Ono †, Shunsuke Saruwatari †, Takashi Watanabe †
† Graduate School of Information Science and Technology, Osaka University

‡ Graduate School of Science and Technology, Shizuoka University

Abstract—In current medical information networks, a prob-
lem is that the high cost for core switches is increasing to
meet the demand for throughput and robustness. To solve the
high cost problem, this paper proposes MediFlow, a medi-
cal information network using OpenFlow. MediFlow replaces
costly high-performance core switches with a MediFlow core
network consisting of multiple inexpensive fully connected
OpenFlow switches. The MediFlow core network adaptively
allocates communication capacity to time-varying traffic in a
medical information network. Even when a link fails, MediFlow
dynamically assigns a path to provide communication robustness.
We implement MediFlow using commercial OpenFlow switches.
The experimental evaluation shows that MediFlow improves
throughput by allocating individual paths to each flow about
7 seconds after congestion occurs by converging multiple flows.
Additionally, even if a link failure occurs in the path used by
the flow, MediFlow re-establishes a path with a disconnection
time of about 0.7 seconds.

I. INTRODUCTION

In the medical information field, there has been a major
change in the last quarter century. In previous times, computer
applications were used mainly in administrative fields such as
the calculation and output of medical bills. However, over the
last ten years computerization has spread to the medical front.
The “grand design for informatization of health and medical
fields” [1], formulated by the Ministry of Health, Labor and
Welfare according to the 2001 e-Japan initiative, had two
goals. First, it was to deploy electronic medical records to over
60% of hospitals with 400 beds or more by FY 2006. Second,
it was to deploy the medical treatment fee calculation and
processing system to more than 70% of hospitals nationwide
by FY 2006. In response to these targets, the penetration
rate of electronic medical records in hospitals of 400 beds
or more reached 70.1% as of 2015. With the introduction of
the electronic medical record, almost all medical information
is computerized.

In the process of computerization, the amount of content
in a medical information network grows year by year. There
are many terminals in outpatient booths and staff stations
of hospital wards. In hospitals with more than a thousand
beds, thousands of terminals may be installed. All medical
practices, such as specimen examination, prescribing, X-ray
photography, and physiological examination, are constantly
ordered as electronic information from these terminals. The
electronic information must be reliably transmitted to each
departmental system. Especially at outpatient booths, the
response time for these sent and received transmissions greatly

affects the patient’s waiting time and the doctor’s business
efficiency.

In such a medical information network, the increasing price
of a network system has become a problem. The high price is
due to the characteristics of medical information networks:
time-varying traffic and redundant settings for robustness.
The studies [2]–[11] using software-defined networks tackled
these problems by installing Multipath TCP (MPTCP) [12]
or a path-selection function into terminals. However, these
approaches are not appropriate because of a constraint specific
to medical information networks, which is that terminal-side
software cannot be modified. The details of these problems
and constraints are discussed in Section II.

This paper proposes MediFlow, a medical information net-
work using OpenFlow. OpenFlow is a standardized protocol
to access the forwarding plane of a network switch or router
[13]–[15]. MediFlow is implemented by replacing the expen-
sive core switch of a current medical information network
with a MediFlow core network consisting of multiple inexpen-
sive OpenFlow switches. MediFlow preferentially provides
communication capacity to heavy traffic whose trend varies
from hour to hour by allocating paths that avoid congestion
for each flow. Even when a link failure occurs, MediFlow
provides robustness by assigning a path to bypass the failed
link. We observed that as a result of implementing MediFlow
using commercial OpenFlow switches, rerouting time is about
7 seconds when congestion occurs and about 0.7 seconds
when link failure occurs.

The remainder of this paper is organized as follows. Section
II presents the problems and constraints of current medical
information networks. In Section III, we propose MediFlow
for medical information networks. In Section IV, we evaluate
MediFlow, which is the proposed method, with commercial
OpenFlow switches. Finally, our conclusions are summarized
in Section V.

II. MEDICAL INFORMATION NETWORKS

A. Price increase due to variability of traffic over time

With growing demand for throughput, the variability of
traffic over time, which is a characteristic specific to medical
information networks, causes an increase in the price of med-
ical information networks. In a medical information network,
the traffic is bursty, and rarely is peak performance required
at all times. The burstiness depends on the hospital’s work
being done during that time.

Fig. 1 shows the traffic collected in an actual medical
information network operated at one university hospital in
Japan. It shows the burstiness of the medical information
network traffic. In the figure, we can see two peaks, around
noon and 4 pm. The maximum peak exceeds 2 Gbps, but
during off-peak time periods the traffic volume is generally
less than 500 Mbps.

An example of a time-specific task is a backup of the
medical information system. The national academic university
hospitals in Japan started the Gemini project [16] on the
occasion of the Great East Japan Earthquake in 2011. Each
national university hospital needs to back up two kinds of
medical information via a wide area network. The first backup
is a proprietary system file used for disaster recovery. The
second backup is a standardized file, to which all hospitals
participating in the project can refer in the event of a disaster.
Since these data are large in capacity, the backup traffic
occupies the network for a long time with a high bandwidth.

In order to support such peak performance, it is currently
necessary to use high-priced network equipment. In the med-
ical information networks to date, the network administrator
tries to predict the traffic-concentrated link, and the link is
multiplexed using Link AggreGation (LAG) [17]. However,
the multiplexed link is not always used, and the port used for
the LAG is idle most of the time. Furthermore, the backup task
also increases the price of network equipment. The timing of
backup task execution has to be planned carefully because of
the huge traffic. However, since the size of the backup source
increases day by day, the increase induces an increase in the
cost of re-designing the network system and task schedule.

B. Price increase due to robustness requirement

In a medical information network, although the failure
rate of the network equipment is relatively low compared to
that of terminals, whose numbers are rapidly increasing, the
high cost for network equipment is increasing because of the
demand for robustness. In recent years, various information
terminals, such as the smartphone and tablet, have been used
in the medical field. Since these terminals are highly portable,

Fig. 1. Traffic trend on medical information network.

they are used for three-point authentication (patients, medical
practices, medical staff) in almost all kinds of medical actions.
Additionally, the electronic medical record system has various
kinds of networked equipment, such as MRI devices and
X-ray photography devices. Since the failure of a medical
information system may affect human life, the information
terminals, medical devices, and network equipment need high
robustness.

To address ever-increasing traffic and the demand for
robustness, medical network systems use expensive network
equipment. In order to improve robustness, network equip-
ment at present uses redundancy of major components. Re-
dundancy improves the overall robustness, but at the same
time it involves a high cost. In particular, the core switch
steadily improves the performance, and the use of special
equipment such as a chassis-type core switch is the cause
of the price increase.

However, in recent years, since the reliability and durabil-
ity of each component has been improved, these redundant
settings have not been effectively utilized. In our survey, 50%
of all failures are failures of laptop computers. On the other
hand, the failure rate of network equipment is relatively small,
less than 1% of all failures.

An example of a redundant setting is the use of the Virtual
Router Redundancy Protocol (VRRP) [18]. When we use
VRRP, although the backup side uses the same components
as the master side, the backup side will not be utilized
unless a failure occurs on the master side. Therefore, the
performance of expensive and high-performance components
are not sufficiently utilized.

C. Restriction of medical information network

As described above, the problem of the medical information
network is that the network equipment is expensive because
of the demand due to the time-varying traffic trends and
the redundant settings for robustness. As discussed, such
a problem may be solved by installing MPTCP [12] or a
path-selection function into the terminals in multimedia data
transfer, a data center network, and so on [2]–[11].

However, in the medical information network, it is difficult
to adopt this approach of changing the terminal-side system
because the medical information system is not constructed by
a single vendor but by multiple vendors. Many applications
provided by each vendor are installed in an information ter-
minal for browsing the electronic medical record provided by
that vendor’s system. Before the installation, the applications
are verified not to mutually interfere. Additionally, there are
many vendor-specific devices provided by each vendor. If we
make uniform changes to all of these devices, much time and
cost is required for installation and verification. Furthermore,
some of these devices are approved as medical devices au-
thorized by the Pharmaceutical Affairs Law. The authorized
devices have a medical device registration number, and the
device configuration cannot change after authorization.

core

switch

edge switch OpenFlow switchterminal

MediFlow

core network10 Gbps

1 Gbps

1 Gbps

1 Gbps

Fig. 2. Current medical information network (left) and MediFlow (right).

III. MEDIFLOW

Based on the discussion in Section II, we designed and
implemented a medical information network, “MediFlow,”
using OpenFlow.

A. Overview

Fig. 2 shows the basic idea of the study. MediFlow replaces
the expensive core switch in the conventional medical infor-
mation network (Fig. 2 left) with a MediFlow core network
(Fig. 2 right). The MediFlow core network is a network
constructed with multiple inexpensive OpenFlow switches that
are connected to each other.

MediFlow improves the throughput of each flow by dynam-
ically allocating flows to paths while avoiding congested links.
Fig. 3 shows the operation of the MediFlow core network
when congestion occurs. The OpenFlow switches S1–S4 are
connected to each other via a 1-Gbps link. As shown on the
left in Fig. 3, when there are three 1-Gbps flows flowing from
S1 to S3, the links from S1 to S3 are congested, and the
throughput becomes only about 0.33 Gbps for each flow. In
MediFlow, total throughput can be improved to 1 Gbps for

S1 S2

S4S3

S1 S2

S4S3

Fig. 3. Operation of MediFlow when congestion is detected.

S1 S2

S4S3

S1 S2

S4S3

�

Fig. 4. Operation of MediFlow when link is lost.

TABLE I
DATABASE IN MEDIFLOW

ofswitchTable OpenFlow switch list
linkTable Relation among OpenFlow switches
hostTable Relation between terminals and OpenFlow switches
pathTable All paths in MediFlow core network
hopTable Hops constructing each path
flowTable Relation between flows and paths

trafficTable Traffic volume of each link in MediFlow core network

each flow by reallocating paths that avoid the congested link
from S1 to S3 as shown on the right in Fig. 3.

MediFlow can also dynamically allocate a path to avoid a
link where a failure has occurred. Fig. 4 shows the operation
when a failure occurs. In Fig. 4, there is one flow of 1
Gbps from S1 to S3. If the link from S1 to S3 fails,
MediFlow automatically reallocates the path from S1→S3 to
S1→S4→S3.

Fig. 5 shows an overview of MediFlow. Each OpenFlow
switch is connected to a controller. The controller consists of
three elements:

1) automatic topology detection mechanism,
2) path allocation mechanism,
3) congestion detection and avoidance mechanism.

Since all the elements can be realized using only OpenFlow
functions, it is unnecessary to change the terminal side. Each
element is implemented using Ryu 4.9, which is a Python-
based OpenFlow framework [19].

Table I shows the tables that the controller has. Medi-
Flow manages ofswitchTable, linkTable, hostTable, pathTable,
hopTable, flowTable, and trafficTable. Each table is imple-
mented using MySQL 14.14.

B. Automatic topology detection mechanism

The automatic topology detection mechanism is a mech-
anism for ascertaining the topology of the MediFlow core
network. MediFlow automatically obtains the topology using
the OpenFlow function, so we can easily extend the MediFlow

controller

1. topology automatic

detection mechanism

2. path assignment

mechanism

3. congestion detection and

avoidance mechanism

edge switch

OpenFlow switch

terminal

ofswitchTable

linkTable

hostTable

pathTable

hopTable

flowTable

trafficTable

Fig. 5. Overview of MediFlow.

core network simply by connecting a new OpenFlow switch.
Using the topology information acquired by the automatic
topology detection mechanism, paths are allocated to avoid
congestion and link failure. In order to calculate the path, it
is necessary to collect the following information:

1) interconnection status among OpenFlow switches,
2) host connection status,
3) disconnection of links.
1) Interconnection status among OpenFlow switches is

collected by features messages and Link Layer Discovery Pro-
tocol (LLDP) packets. When receiving a hello message issued
when an OpenFlow switch is connected to the controller, Med-
iFlow acquires information of the connected OpenFlow switch
using the features message. The features message includes the
MAC address and each port number of the OpenFlow switch.
Based on the acquired information, MediFlow sends packet-
out messages to the OpenFlow switch for sending LLDP
packets from each port. When another OpenFlow switch
receives the LLDP packet, a packet-in message is issued. The
packet-in message contains the MAC address of the OpenFlow
switch that sent the LLDP packet and the port number from
which the LLDP was received.

By combining the MAC addresses and port numbers that
are collected with the feature messages and LLDP pack-
ets, MediFlow apprehends how the OpenFlow switches are
connected to each other. Information acquired by the fea-
tures message is recorded in ofswitchTable, and informa-
tion acquired by the LLDP packet is recorded in link-
Table. To process messages and packets, our implemen-
tation uses Ryu’s event handlers: event.EventSwitchEnter,
ofp event.EventOFPStateChange, and event.EventLinkAdd.

2) Host connection status is obtained using OpenFlow
packet-in messages. In MediFlow, hosts include information
terminals and medical devices. A packet-in message is issued
to the controller when a packet arrives at an OpenFlow switch
whose flow table does not have an entry that matches the
packet. When the packet-in message arrives, the MediFlow
controller acquires the identifier and port number of the
OpenFlow switch and the source MAC address of the packet
that corresponds to the packet-in message. If the source MAC
address arrives at the controller for the first time, it is recorded
in the hostTable that the terminal exists in the direction of
the acquired OpenFlow switch identifier and port number.
These operations are implemented in Ryu’s event handler
event.EventHostAdd.

3) Disconnection of links is detected by port-status mes-
sages from OpenFlow switches and by LLDP packets pe-
riodically exchanged between OpenFlow switches. A port-
status message is issued when the state of the port in an
OpenFlow switch changes. Transmission of LLDP packets
from each OpenFlow switch is controlled from the controller.
Since the flow entry corresponding to the LLDP packet is
designed not to be added, a packet-in message is always sent
to the controller when each OpenFlow switch receives the
LLDP packet. When the controller receives notification of a
link down with a port-status message or determines a link is

Algorithm 1 packet-in event handler
1: Input m: packet-in message
2: dnow ← getDatapathId(m)
3: asrc ← getSourceMacAddress(m)
4: adst ← getDestinationMacAddress(m)
5: p← flowTable[(asrc, adst)]
6: if p = NULL then
7: dsrc ← hostTable[asrc]
8: ddst ← hostTable[adst]
9: p← getShortestFromPathTable(dsrc, ddst)

10: flowTable[(asrc, adst)] ← p
11: end if
12: q ← getPortFromHopTable(dnow, p)
13: addFlowEntry(dnow, q, m)
14: sendPacketOut(dnow, q, m)

down by not having received any LLDP packet for a certain
period of time, the link down event handler is called. In our
implementation, the link down event handler corresponds to
Ryu’s event handler event.EventLinkDelete.

C. Path allocation mechanism

The purpose of the path allocation mechanism is to deter-
mine a path for transferring packets in the MediFlow core
network. It is desirable for the path calculation cost not to
affect the communication performance. For example, if a
path search is being performed at a time when a packet-
in message arrives, the path search cost will diminish the
communication performance. In order that it should not affect
communication performance, the path allocation mechanism
employs the following two ideas:

1) separation of paths and terminals,
2) pre-calculation of all paths among OpenFlow switches.
1) Separation of paths and terminals is realized by host-

Table and flowTable. The hostTable associates the host MAC
addresses with datapath IDs. The datapath ID is a mechanism
in OpenFlow to identify an arbitrary OpenFlow switch. The
flowTable associates flows with paths. In MediFlow, a path is
represented by a list of pairs consisting of a datapath ID and
a port. Because of the combining of hostTable and flowTable,
MediFlow enables the path calculation cost to depend only
on the number of OpenFlow switches.

2) Pre-calculation of all paths among OpenFlow switches
reduces the runtime path allocation cost. The pre-calculated
paths are stored in pathTable and hopTable. Using the
information acquired by the automatic topology detection
mechanism described in Section III-B, all the paths among
OpenFlow switches are discovered by a breadth-first search.
Because MediFlow assumes that the number of OpenFlow
switches is at most 10, the computational complexity does not
matter even if all paths are listed by the breadth-first search.
Each path is recorded in pathTable together with the number
of hops so that the controller can easily acquire the shortest
path.

Algorithm 1 shows the algorithm of the packet-in event
handler. When a packet-in message arrives at the controller,
it extracts the source MAC address and the destination MAC
address included in the packet-in message. The pair of the

Algorithm 2 port statistics reply event handler
1: Input m: port statistics reply message
2: d← getDatapathId(m)
3: p← getPortNumber(m)
4: b← getTxBytes(m)
5: t← now()
6: (tpre, bpre)← getPreviousFromTrafficTable(d, p)
7: r ← (b− bpre)/(t− tpre)
8: if r > α then
9: call congested event handler(d, p)

10: end if
11: insertToTrafficTable(d, p, t, b)

extracted source MAC address and destination MAC address
is set as a flow, and a check is performed to ascertain whether
or not a path has already been allocated to the flow. If the path
has already been allocated, it acquires the OpenFlow switch
to send next, registers it in the flow entry, and transmits a
packet-out message.

If the path has not yet been allocated, the controller acquires
the final destination datapath ID using the extracted destina-
tion MAC address and hostTable. Next, from the pathTable,
the controller gets the shortest path from the datapath ID
that issues received the packet-in message to the datapath ID
acquired from hostTable. Finally, based on the acquired path,
the controller acquires the OpenFlow switch to which to send
next, registers it in the flow entry and flowTable, and transmits
a packet-out message.

When a link failure occurs, the relevant information is
deleted from ofswitchTable, linkTable, pathTable, hopTable,
and flowTable. Normally, the next operation is to delete
the associated flow entries from the OpenFlow switches.
However, if the associated flow entry is deleted, a packet-
in message is generated again, resulting in overhead. In order
to reduce overhead, MediFlow deletes the flow entry related
to the link failure after registering the alternative path.

D. Congestion detection and avoidance mechanism

The congestion detection and avoidance mechanism detects
congestion occurring in the link in the MediFlow core network
and reconfigures the path so as to avoid the congested link.
Assuming that the number of flows is F and the number of
OpenFlow switches is N , the variation of allocating a flow to
a path is O(NF). Since the number of flows in a medical
information network changes from moment to moment, a
lightweight congestion detection and avoidance mechanism
is preferable.

To realize lightweight congestion detection, MediFlow
monitors only links among OpenFlow switches and provides
a simple threshold-based congestion detection mechanism.
MediFlow obtains the amount of communication per unit
time of each port using an OpenFlow function and judges
congestion on the basis of a threshold. First, the controller
periodically issues a port statistics request to each OpenFlow
switch using a multipart message. At this time, by requesting
information on only the ports connecting the OpenFlow
switches, the load for acquiring the traffic information is
reduced. When the port statistics reply comes back from each

Algorithm 3 congested event handler function
1: Input d: datapath ID, p: port number
2: F ← getAllocatedFlowSet(d, p)
3: if |F | = 1 then
4: return
5: end if
6: (asrc, adst)← choose a flow randomly from F
7: Q← getPathSetFromPathTable(asrc, adst)
8: while |Q| > 0 do
9: qnew ← get a path randomly from Q

10: if qnew does not include (d, p) then
11: qold ← flowTable[(asrc, adst)]
12: flowTable[(asrc, adst)] ← qnew
13: add flow entries related to qnew
14: delete flow entries related to qold
15: return
16: end if
17: Q = Q− q
18: end while

OpenFlow switch, the port statistics reply event handler is
executed.

Algorithm 2 shows the operation of the port statistics reply
event handler. When a port statistics reply is returned, the
controller gets the datapath ID, port number, and the number
of bytes transmitted by the OpenFlow switch that sent the
reply message. The number of bytes transmitted is the cumu-
lative value up to that point. To calculate the traffic volume
of the port at this moment, the event handler acquires bpre
and tpre from trafficTable via the getPreviousTrafficRecord
function: bpre is the number of bytes transmitted, and tpre is
the timestamp acquired, at the previous time.

When b is the current number of bytes transmitted and
t is the current time stamp, the current traffic load r is
calculated with line 7 in Algorithm 2. When the traffic load
exceeds the threshold α, it is judged that congestion has
occurred, and the congested event handler function is called.
The congested event handler function will be described later.
The threshold α uses 90% of the wire rate in the current
implementation. For example, for a wire rate of 1 Gbps at
1000BASE-TX, α is 900 Mbps. Finally, b and t are recorded
in trafficTable via the insertTrafficStats function.

The congested event handler function is a function to
reallocate paths to avoid congested links. We do not calculate
the path in the function but only select a path at random
from paths previously calculated as described in Section
III-C. The randomness is introduced to avoid congestion
by lightweight processing. If congestion occurs again after
the path is selected, the congested event handler function is
called again. The path reassignment continues until finally the
appropriate path allocation is completed or the traffic causing
the congestion disappears.

Algorithm 3 shows the behavior of the con-
gested event handler function. The congested event handler
function is given the information of a congested link, which
is a datapath ID d and a port number p, as input arguments.
The congested event handler acquires all flows that are
already allocated to paths that include (d, p). If there is only
one allocated flow, it is not necessary to change the path,

so the handler ends with return. If there are two or more
flows, one of them is randomly selected as a path change
candidate. At line 7 in Algorithm 3, the handler acquires all
paths that can be allocated to the candidate flow with the
getPathSetFromPathTable() function. In lines 8–17, one path
is taken out from the set Q, which are the acquired paths,
and if the path does not include a current congested link
(d, p), the path is allocated to the flow (asrc, adst).

As with the case of a link failure as described in Section
III-C, a mechanism to reduce path switching overhead is
introduced when congestion occurs. In lines 13–14, MediFlow
registers the new path as flow entries before deleting the flow
entry related to the old path.

IV. EXPERIMENTAL EVALUATION

We implemented MediFlow using commercial OpenFlow
switches and evaluated the basic performance.

A. Evaluation environment

Fig. 6 shows the experimental evaluation environment. It
consists of three OpenFlow switches (S1–S3), one L2 switch,
one controller, one traffic generator, and two packet capture
PCs (PC1, PC2). The three OpenFlow switches S1–S3 are
connected to each other, and each OpenFlow switch is a
Pica8 P-3297 [20], which equips 48 ports of a 1000BASE-
T interface. Pica8 P-3297 supports OpenFlow versions from
1.0 to 1.4 and stores flow entries in the Ternary Content
Addressable Memory (TCAM). The controller is connected
to each OpenFlow switch via the L2 switch, an HP ProCurve
Switch 2610-48-PWR. The controller is an HP Pavilion HPE
h9 (CPU: Core i7-3770 3.4 GHz, RAM: 16 GB, HDD: 2 TB
× 3), and Ubuntu 16.04 is running on the PC. PC1 and PC2,
which conduct packet capture, are a Microsoft Surface Pro 3
(CPU: Core i7-4650U 2.3 GHz, RAM: 8 GB, SSD: 256 GB)
and a NEC LaVie ZERO (CPU: Core i7-6500U 2.5 GHz,
RAM: 8 GB, SSD: 256 GB), respectively. PC1 monitors the
link from S1 to S2, and PC2 monitors the link from S3 to
S2 using mirror ports. The traffic generator is a SmartBits
600B [21] manufactured by Spirent Communications Inc.
The SmartBits has two line cards. Each line card has two
1000BASE-T Ethernet ports (src1, src2, dst1, dst2). SmartBits
can generate an arbitrary flow rate with an arbitrary frame

length and arbitrary protocol. In the evaluation, the frame
length was set to 1518 B, and the protocol was set to TCP.

B. Price

A core switch used in current medical information networks
is priced at several hundred thousand USD. There is a case in
which a core switch of about 600,000 USD was introduced at
a 600-bed hospital. On the other hand, the OpenFlow switch
is several thousand USD per switch. The Pica8 P-3297 used
in the actual machine evaluation for this paper was priced at
about 3500 USD as of March 2017. Even if 10 OpenFlow
switches are used, the price is about 35,000 USD, which
shows that the cost is drastically reduced.

C. Throughput

In order to evaluate the throughput of MediFlow, we mon-
itored the throughput trend when there were multiple flows.
In this evaluation, 800 Mbps traffic from src1 to dst1 (Fig. 6)
was generated immediately after the start of the experiment,
and 800 Mbps traffic from src2 to dst2 were generated 6 s
after the start.

Fig. 7 shows the evaluation results. The horizontal axis
shows time elapsed from the start of the experiment, and
the vertical axis shows traffic. The traffic trends for the links
S1→S2 and S3→S2 are plotted. Immediately after the start
of the experiment, only 800 Mbps traffic from src1 to dst1
can be observed on the link S1→S2. When 800 Mbps traffic
from src2 to dst2 occurs 6 seconds after the start of the
experiment, the traffic given to the link S1→S2 totals 1600
Mbps, which shows that congestion has occurred. The path
S1→S3→S2 is allocated to the flow src2 to dst2 by the
congestion detection and avoidance mechanism 14 s after the
start of the experiment, and it can be seen that the link S1→S2
is 800 Mbps and the link S3→S2 is also 800 Mbps.

It takes about 7 seconds to detect congestion and avoid
congestion depending on our implementation of MediFlow.
Since a flow such as a backup in a medical information
network continues for several tens of minutes to several hours,
there is no practical problem even with a switching time of
7 seconds. The delay of about 7 seconds is caused by the
querying of traffic information of each OpenFlow switch at
intervals of 5 seconds. By shortening the interval of traffic

Fig. 6. Experimental evaluation settings.
Fig. 7. Traffic trend on congestion. Fig. 8. Traffic trend on link lost.

information queries to the OpenFlow switch, it is possible to
shorten the time required for congestion avoidance to several
seconds. The lower limit of the switching time depends on
the implementation of the Management Information Base
(MIB). In the Pica8 P-3297 used for this implementation, the
update interval of MIB is 1 second because it assumes use by
SNMP(Simple Network Management Protocol).

D. Robustness

In order to evaluate the robustness of MediFlow, we moni-
tored the throughput trend when there was a single flow and a
link failure. In this evaluation, 800 Mbps traffic from src1 to
dst1 (Fig. 6) was generated immediately after the start of the
experiment, and the cable connected to S1→S3 was removed
9 seconds after the start.

Fig. 8 shows the evaluation results. The horizontal axis is
the time elapsed from the start of the experiment, and the
vertical axis is the traffic. As for the evaluation in Section
IV-C, the traffic of S1→S2 link and the S3→S2 link is plotted.
Immediately after the start, the path S1→S2 is allocated to the
flow from src1 to dst1, so the 800 Mbps traffic on S1→S2
can be observed in the figure. When we remove the cable
connecting S1 and S2 9 seconds after the start, the traffic on
S1→S2 becomes zero. About 0.7 seconds after removing the
cable, MediFlow reallocates the path S1→S3→S2 to the flow
from src1 to dst1. Therefore, the 800 Mbps traffic of S3→S2
can be observed in the plot.

We believe that the approximate 0.7 seconds recovery time
is dependent on the implementation of the OpenFlow switch.
The OpenFlow switch sends a port-status message that the
state of the port has changed. MediFlow adds and removes
flow entries for new paths as the port-status message arrives.
We estimate that about 0.7 seconds is the summation of the
time required for detection of the link break, notification,
registration of the flow entry, and deletion of the flow entry.
Since the default value for TCP session timeout is 21 seconds
in Microsoft Windows and 189 seconds in Linux, even if the
link is lost for about 0.7 s, there is no practical problem.

V. CONCLUSION

In this paper, we have proposed MediFlow, a medical
information network using OpenFlow. MediFlow solves the
problem of high price by replacing the expensive core switch
of the conventional medical information network with the
MediFlow core network. We have implemented MediFlow
using using commercially available OpenFlow switches. Ex-
perimental evaluation shows that MediFlow allocates paths to
flows while avoiding congested or failed links.

REFERENCES

[1] Ministry of Health, Labor and Welfare, “Informationization in the
field of health care (in Japanese).” http://www.mhlw.go.jp/shingi/0112/
s1226-1.html.

[2] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. H,
“Improving datacenter performance and robustness with multipath
TCP,” ACM SIGCOMM Computer Communication Review, vol. 41,
pp. 266–277, August 2011.

[3] Y. Cao, M. Xu, X. Fu, and E. Dong, “Explicit multipath congestion
control for data center networks,” in Proceedings of the ACM 9th
Conference on Emerging Networking Experiments and Technologies
(ACM CoNEXT’13), pp. 73–84, December 2013.

[4] S. Hu, K. Chen, H. Wu, , W. Bai, C. Lan, , H. Wang, , H. Zhao,
and C. Guo, “Explicit path control in commodity data centers: Design
and applications,” in Proceedings of the 12th USENIX Symposium on
Networked Systems Design and Implementation (USENIX NSDI’15),
pp. 15–28, May 2015.

[5] M. Bredel, Z. Bozakov, A. Barczyk, and H. Newman, “Flow-based
load balancing in multipathed layer-2 networks using OpenFlow and
multipath-TCP,” in Proceedings of the 3rd Workshop on Hot Topics in
Software Defined Networking (ACM HotSDN’14), pp. 213–214, August
2014.

[6] H. E. Egilmez, S. Civanlar, and A. M. Tekalp, “A distributed QoS
routing architecture for scalable video streaming over multi-domain
OpenFlow networks,” in Proceedings of the IEEE 19th International
Conference on Image Processing (IEEE ICIP’12), pp. 1–4, September
2012.

[7] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable
video streaming over OpenFlow networks: An optimization framework
for QoS routing,” in Proceedings of the 18th IEEE International
Conference on Image Processing (IEEE ICIP’11), pp. 1–4, September
2011.

[8] S. Laga, T. V. Cleemput, F. V. Raemdonck, F. Vanhoutte, N. Bouten,
M. Claeys, and F. D. Turck, “Optimizing scalable video delivery through
OpenFlow layer-based routing,” in Proceedings of the IEEE Network
Operations and Management Symposium (IEEE NOMS’14), pp. 1–4,
May 2014.

[9] M. Karl, J. Gruen, and T. Herfet, “Multimedia optimized routing in
OpenFlow networks,” in Proceedings of the 19th IEEE International
Conference on Networks (ICON’13), pp. 1–6, December 2013.

[10] C. Nakasan, K. Ichikawa, H. Iida, and P. Uthayopas, “A simple multi-
path OpenFlow controller using topology-based algorithm for multipath
TCP,” in Proceedings of the PRAGMA Workshop on International
Clouds for Data Science (PRAGMA-ICDS’15), pp. 1–8, October 2015.

[11] Y. Li and D. Pan, “OpenFlow based load balancing for fat-tree networks
with multipath support,” in Proceedings of the IEEE 12th International
Conference on Communications (IEEE ICC’13), pp. 1–5, June 2013.

[12] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP extensions
for multipath operation with multiple addresses.” IETF RFC 6824,
January 2013.

[13] N. Mckeown, S. Shenker, T. Anderson, L. Peterson, J. Turner, H. Bal-
akrishnan, and J. Rexford, “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM Computer Communication Review, vol. 38,
pp. 69–74, April 2008.

[14] A. Kolasani and B. Ramamurthy, “Network innovation using OpenFlow:
A survey,” IEEE Communications Surveys and Tutorials, vol. 16,
pp. 493–512, August 2014.

[15] F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and
OpenFlow: From concept to implementation,” IEEE Communications
Surveys and Tutorials, vol. 16, pp. 2181–2206, May 2014.

[16] Sience Information NETwork 5 Web Site, “The Gemini Project (in
Japanese).” http://w4a.sinet.ad.jp/case/tokyo-med/.

[17] IEEE 802.3 Working Group, “Aggregation of multiple link segments,”
IEEE Std 802.3ad-2000, 2000.

[18] S. Knight, D. Whipple, R. Hinden, D. Mitzel, P. Hunt, P. Higginson,
M. Shand, and A. Lindem, “Virtual router redundancy protocol.” RFC
2338, April 1998.

[19] Ryu SDN Framework Community, “Ryu web site.” https://osrg.github.
io/ryu/.

[20] PICA8 Inc, “PICA8 open networking.” http://www.pica8.com/.
[21] Spirent Federal Systems, “SmartBits 600b.” http://www.spirentfederal.

com/ip/products/smartbits/datasheets/.
[22] M. Rose and K. McCloghrie, “Structure and identification of manage-

ment information for TCP/IP-based internets.” IETF RFC 1155, May
1990.

[23] K. McCloghrie and M. Rose, “Management information base for
network management of TCP/IP-based internets: MIB-II.” IETF RFC
1158, March 1991.

[24] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simple network
management protocol (SNMP).” IETF RFC 1157, May 1990.

