

Challenges and Lessons Learned in Building a Practical Smart Space

Yoshihiro Kawahara1, Masateru Minami2, Shunsuke Saruwatari1,
Hiroyuki Morikawa1 and Tomonori Aoyama1

1) The University of Tokyo, 2) Shibaura Institute of Technology
kawahara@mlab.t.u-tokyo.ac.jp, minami@sic.shibaura-it.ac.jp,

{saru, mori, aoyama}@mlab.t.u-tokyo.ac.jp

Abstract

Ubiquitous computing as the integration of sensors,
middleware, and networking technologies to form a
“smart space” environment relies on the development
of both software and hardware solutions. For over 3
years, our group has been developing a smart-space
environment, involving the exploration of core
technologies and attractive applications. In this paper,
we introduce the challenges faced and lessons learned
in designing and developing a smart-space
environment, including device control services,
locating systems, wireless sensor nodes, and
middleware services.

1. Introduction

The notion of ubiquitous computing is quite distinct
from the conventional computing paradigm in that it
implies the provision of services via a network of
invisible computers. In a ubiquitous computing
environment, tiny devices such as sensors are
embedded in living spaces to collect real-world
information and build a model of the real world in
order to provide computer-controlled services. Using
this repository of user and world contexts, users can
reap the benefits of smart and attentive services
provided by embedded computers.
The realization of ubiquitous computing relies

heavily on the miniaturization of computers and
improvement of communication protocols and power
supply technologies. However, it is also necessary to
develop novel services to complement these new
technologies and facilitate the development of new
core technologies. This situation is quite similar to that
surrounding the birth of the Internet. New services and
applications are inspired by the use and exploration of
the new technologies, and vice versa. Tim Berners-
Lee, the inventor of the World Wide Web (WWW),

stated that “I just had to take the hypertext idea and
connect it to the TCP and DNS ideas and the World
Wide Web.” [1] This implies that most novel
inventions are supported by existing technologies. In
addition, the use of new services triggers the invention
of new core technologies. A good example is the
search engine algorithm, which was developed as the
WWW was deployed. In the research and development
of ubiquitous computing, synergistic effects can
therefore be expected between the creation of services
and the development of core technologies.
Since 2001, our group has been constructing a smart-

space environment, which has involved the exploration
of core technologies and attractive applications.
Through this experience, we have learned many
lessons and developed several practical systems and
core technologies. Most importantly, this experience
has lead us to conclude that the development of both
software and hardware is indispensable for ubiquitous
computing, which is realized as an integration of
various components including sensors, middleware,
and networking technologies.

1.1. Related works
Several other research programs are currently in

progress with a shared perspective of exploring a new
research agenda. These include iRoom [1], the Aware
Home [3], Easy Living [4], Smart-Its [5], and
SSLab[6], which are all practical approaches to
realizing smart environments. Although our project
shares a similar philosophy to these other programs,
the underlying technologies, goals, and lessons learned
are different. We believe it is meaningful for each
project to report on their respective experiences and
the solutions developed. In this report, we present the
design considerations for our testbed room, the
development of our distributed object localization
system for physical-space internetworking
(DOLPHIN) ultrasonic locating system, the U3 sensor
node, and STONE middleware.

2. How we made things smart

In the absence of a formulaic method for building a
smart environment, we began by trial and error from
some basic principles. The testbed for this project was
a room of about 100 m2 in area (8.6 m × 12 m; Figure
1) with steel trellises installed on the ceiling to allow
the easy attachment of various devices. The room was
divided into three main spaces, a working desk
environment, a collaborative meeting space, and a
relaxing living space. Up to 10 researchers actually
work in this room everyday.

Figure 1 STONE room

The first step in the construction of our smart
environment was embedding devices into the
environment logically. This involved the connection of
computers, audio-video equipment, and lighting to a
network. The appliances in the room were modified
using an off-the-shelf multipurpose infrared remote
control (“crossim”), which was connected to a
computer via an RS-232C interface to allow the
appliances to be controlled via the network. The
infrared signal transmitter was extended in order to
ensure the signal reached all areas of the room.

2.1. Smart Baton System
Although audio-visual equipment was connected to

the network, it simply was not worth the effort to boot
the computer and open a browser in order to turn on a
television in front of the user. Moreover, when a large
number of appliances are connected, selecting the
appropriate device from the list can also be quite
troublesome.
To overcome this problem, we developed a Smart

Baton System, which provided the following features
in order to overcome these inconveniences:

(1) Explicit and easy selection of appliances
(2) Provision of an appropriate user interface for each

appliance
(3) Support of multi-user operation
(4) User identification and realization of differentiated

services for each user
Although several middleware architectures have been

developed for ubiquitous computing environments,
such as Jini [7] and UPnP [8], these existing
architectures do not satisfy the first requirement since
their directory service-based approach does not allow
users to choose appliances intuitively. Infrared remote
controls are preferable in terms of intuitive
manipulation. However, infrared remote controls
usually provide only a poor user interface and do not
allow for user customization [9], thus not satisfying the
second requirement. A system such as that reported by
Olson and Nielson [10] allows users to explicitly
choose an appliance with a laser pointer via various
user interfaces. However, as the laser spot is
recognized by image processing, the system allows
only one user to control appliances at a time, and as
such it does not satisfy the third and fourth
requirements.

In order to satisfy all requirements, we developed
the Smart Baton System as a laser-pointer-based
manipulation technique. The system differs from
similar techniques in that it is possible for users to
download an appropriate user interface to a handheld
device via the network, and target appliances are able
to distinguish between multiple users and provide
differentiated services.

2.1.1. System

An overview of the Smart Baton System is shown in
Figure 2. The system consists of smart batons, smart
baton-compatible appliances, and a certificate
authority (CA). A smart baton is a handheld device
equipped with a laser pointer, and is used to control
appliances. A smart baton-compatible appliance has a
laser receiver and is connected to the network. The CA
is used to authenticate and identify users and
appliances. Figure 3 illustrates the function diagram
for the smart baton and an appliance. The user chooses
an appliance by pointing to its photo detector with the
laser pointer, and the smart baton sends information by
the laser beam. The appliance detects the beam and
obtains the information via its laser receiver, identifies
the network address of the smart baton, and establishes
a network connection to the smart baton. An
authentication process follows to establish the user’s
identity, allowing so the appliance to provide different

user interfaces and services for respective users. For
example, the system can prevent children from turning
on a television at night while allowing adults full
control.

Device

Authentication Server

Smart Baton

Smart Baton Controller Session
Keeper

Device Control Server

(1)

(2)
(3)

(4)

(5)
(6)
(7) (8)

User Interface

(1)Request
(2)Session Initiation
(3)User Authentication
(4)Getting Authentication Information
(5)Getting User Interface
(6)Transferring User Interface
(7)Control Command
(8)Forwarding Command

Figure 2. Smart Baton System

iPAQ H3660 PIC16F628

Laser Pointer

Sub Carrier 3kHz
Data 50bps

50bps

Visible
Laser

HPF

Serial I/F

3kHz

Amplifier

3KHz BPF

Solar Cell

Laptop PC

802.11b

DetectionPIC16F877

LAN

Base
Station

Certificate
Authority

Figure 3. Hardware function diagram

2.1.2. Security Considerations

In a ubiquitous computing environment, appliances
will exploit user information in order to provide
flexible services, which may mean users will provide
appliances with private information. In such a
situation, there may be a concern about access to this
private information when it is transferred to the
appliances. In the Smart Baton System, there are two
communication channels between users and appliances
over which information is transferred; the laser beam
and a network connection. The former is vulnerable to
impersonating appliances, such as a fake appliance set
to collect information received by a laser beam. To
avoid such security problems, the laser beam conveys
only unimportant information, such as the Internet
protocol (IP) address of the smart baton, the TCP port
number, and a randomly generated session identifier.
As the TCP port number and session identifier are one-

time values, the IP address of the smart baton remains
the only potential target of theft, but this is not a
serious issue because the IP address can already be
easily revealed via the domain name server (DNS).
The network connection is vulnerable to wire-

tapping, but that can be easily prevented employing an
encryption technology. In our prototype
implementation, all communication over the network is
encrypted by secure sockets layer (SSL) encryption,
making it virtually impossible for someone listening
on the network to steal private user information. This
measure also makes the system resistant to tampering,
and the authentication of appliances prevents
impersonation attacks on the network.

Figure 4. Prototype system

2.1.3. Implementation

Figure 4 shows a prototype implementation of the
Smart Baton System. In this implementation, a
COMPAQ iPAQ Pocket PC H3660 equipped with a
custom laser transmitter is employed for the smart
baton, and a laptop computer equipped with a laser
receiver is adopted as a smart baton-compatible
appliance. The laser transmitter consisted of visible
laser device and a microcontroller (PIC16F628,
Microchip Inc.), which is controlled via the iPAQ's
serial interface. The laser transmitter sends data via the
visible laser at 200 bps upon receiving data from the
iPAQ. The laser receiver consists of a photodetector
(solar cell), a signal-processing circuit, and a
microcontroller (PIC16F877, Microchip Inc.), and
sends received data to the laptop via a serial interface.
In this implementation, HTML and HTTP are used as

the basis for the user interfaces in order to simplify the
system. When an appliance serves a user, a Device
Control Server sends the URL of the user interface to
the smart baton, and a web server runs the appliance.
On the smart baton, a web browser is invoked and
accesses the URL, and the user then controls the
appliance via the web browser. As the system can
distinguish between users, appliances can provide

(b) Information Appliance (a) Smart Baton (PDA)

differentiated services for each user. For example, by
checking the user’s age, the system can provide a
remote control interface that prohibits access to
prohibited programs.

3. Obtaining Contexts in Real World
Environments

Our next challenge was to develop a platform that
included a computer model of the real-world
environment. This system required the implementation
of a locating system and the deployment of sensor
nodes.

3.1. DOLPHIN
In a ubiquitous computing environment, the physical

location of indoor objects is key information for
supporting context-aware applications. Several
positioning systems have been proposed for obtaining
indoor location information, including Active Bat [11]
and Cricket [12], which use ultrasonic time difference
of arrival (TDOA) data to measure the three-
dimensional position and orientation of objects in an
indoor environment with high accuracy. However,
such ultrasonic positioning systems require additional
hardware for the transmission and reception of
ultrasonic pulses, and usually require manual pre-
configuration of the locations of reference beacons or
sensors. The setup and management costs of such a
system would be unacceptably high if the system were
to be applied to a large-scale environment such as an
office building. An ad-hoc localization mechanism
[13] can be applied to such problem. In [13], the
authors proposed a collaborative multilateral algorithm
to solve the localization problem in a distributed
manner, and performed a detailed simulation-based
analysis of a distributed localization system. To design
a practical location information infrastructure, we
believe that experimental analysis is also required in
order to discover practical problems with the
distributed localization system.
From this point of view, we developed a distributed

positioning system called the Distributed Object
Localization System for Physical-space
Internetworking (DOLPHIN), which determines the
position of an object using only a few manually
configured references. The system was constructed
from off-the-shelf hardware devices, and represents a
simple but practical distributed positioning algorithm.

3.1.1. Positioning Algorithm

Figure 5 shows an overview of the DOLPHIN
system. The system consists of a number of DOLPHIN
nodes consisting of a 2400 bps radio frequency (RF)
transceiver for time synchronization and message
exchange among nodes, several 40 kHz
omnidirectional ultrasonic transducers, and a Hitachi
H8S/2215 16 MHz microprocessor for calculating the
location of the nodes.

Figure 5. DOLPHIN system

The key premise of our positioning algorithm is hop-
by-hop localization. For example, in the bottom left of
Figure 5, node D can determine its position by
receiving ultrasonic pulses from the reference nodes A,
B, and C. However, nodes E and F cannot receive
ultrasonic pulses from reference nodes due to physical
obstacles such as a wall. Here, if the position of node
D is determined, and node E can receive ultrasonic
pulses from node D, node E can compute its position
using the distances from nodes B, C, and D. If the
locations of nodes D and E are determined, node F can
compute its position using nodes C, D, and E. In this
way, all nodes in the DOLPHIN system can be located.
There are two main advantages to this mechanism.
First, the system requires only a few (minimum three)
nodes to determine the positions of all nodes. Second,
nodes can determine their positions even if unable to
receive ultrasonic pulses from reference nodes directly.
The positioning algorithm runs by exchanging several

messages as shown in Figure 6: and identification (ID)
notification message (IDMsg), measurement message
(MsrmtMsg), and location notification message
(LocMsg). The nodes in the system are assigned such
that there is one master node, one transmitter node, and

the rest receiver nodes. Consider the example depicted
in Figure 5, where nodes A, B, and C are reference
nodes, and nodes D, E, and F are normal nodes (the
positions of the nodes are unknown). Here, we assume
that nodes A, B, and C have node lists [B, C], [A, C],
and [A, B], respectively. We also assume that node E
and node F are unable to receive ultrasonic pulses from
node A because of an obstructing wall.

Figure 6. DOLPHIN positioning algorithm

With node A acting as the master node, Figure 6
shows the timing chart for the positioning algorithm.
First, node A chooses one node randomly from its
node list [B, C]. If node B is chosen, node A transmits
MsrmtMsg including the ID of node B. On receiving
the message, node B becomes the transmitter node and
generates ultrasonic pulses. At the same time, nodes
C, D, E, and F become receiver nodes and start internal
counters (synchronization phase). When a receiver
node detects an ultrasonic sign from node B, it stops its
internal counter and calculates its distance from node
B. After several milliseconds, depending on the time
taken by the overflow of the internal counter, node B
sends LocMsg to notify the receiver nodes of its
position. The receiver nodes that are able to detect the
ultrasonic signal from node B store the location of
node B and their distances to node B in their position
table (measurement phase). All nodes then listen for
IDMsg for several milliseconds (advertisement phase).
If there is a node that could determine its position
based on three or more distances, it advertises its ID in
this phase. This ID is added to the node list of every
other node.
In the above example, because nodes D, E, F cannot

determine their positions, no IDMsg is sent by those
nodes in this phase. This sequence of phases defines
one cycle of the positioning algorithm in the
DOLPHIN system. In the next cycle, node B, which

acted as a receiver node in the previous cycle, becomes
the master node, and the positioning algorithm
proceeds in the same manner. After three or more
cycles of positioning, node D can determine its
position based on measured distances from nodes A,
B, and C. At which time, node D can send its IDMsg
in the advertisement phase. All other nodes that
received the IDMsg from node D add the ID of node D
to their node lists, and node D is recognized as a
candidate master node. After node D becomes master
node, node E and node F can measure their distances
from node D. Then, node E can determine its position
and advertise its IDMsg. Finally, based on nodes C, D,
and E, node F can determine its position. In this way,
we can locate all nodes in the DOLPHIN system.
In the DOLPHIN system, it is necessary to prepare

for node failure. To recover from node failure, each
node in the system has a recovery timer and an
advertisement timer. The recovery timer is set when
nodes receive MsrmtMsg, and expires if there has been
no MsrmtMsg for a certain period. If the recovery
timer expires, a node in the system is chosen randomly
to become master node, and the positioning algorithm
resumes. If a candidate node does not receive
MsrmtMsg from other nodes within a certain period,
the advertisement timer in the node expires, meaning
that the node is not recognized as a master node by the
other nodes. In this case, the node retransmits IDMsg
in the advertisement phase of each positioning cycle.

3.1.2. Experimental Result

As an experimental evaluation of the algorithm, we
placed seven nodes as shown in
Figure 7, and computed the average and variance of
the measured position of each normal node (nodes D-
G) over 1000 cycles. The results revealed that the
system could determine the position of objects with an
accuracy of around 15 cm in a real indoor
environment. However, the positioning error for nodes
E-G was higher than that for node D, as the
positioning error at node D affects the position
determination of nodes E-G, which determine their
position based on node D. Although this error
propagation problem is inherently unavoidable in the
DOLPHIN system, we expect to minimize positioning
error by placing reference nodes at appropriate
locations.
Our group has obtained a large amount of data

through experimentation in our laboratory. We are
currently designing an improved version of the
positioning algorithm that can handle practical
problems such as multipath propagation and node
mobility.

Figure 7. Experimental results

U3
In addition to location information for users and

objects, real world information is helpful for context-
aware applications. When designing a practical sensor
network architecture for future ubiquitous computing
environments, it is desirable that the requirements of
future applications be made clear. However, it has
been difficult to envision what such future applications
will be like. To assist in the implementation and
evaluation of prototype applications and to clarify
technical challenges, we have developed a sensor
network development testbed called U3 (U-Cube) that
allows developers to flexibly implement various
applications. The U3 device is a 50 mm cube
containing a power module, a microprocessor module,
an RF communication module, and a sensor module.
The first implementation of U3 is capable of sensing
several types of data such as temperature, brightness,
and the presence of humans, and can send this
information to other nodes and/or peripheral devices
including computers and PDAs.

Figure 8. U3 hardware components

3.1.3. Hardware Design

There is a wide range of potential applications and
protocols for sensor networks. For environmental

monitoring applications, it would be useful if the
wireless nodes could provide a generic sensor
interface, which would allow the sensors to be easily
replaced. For practical reasons, it would also be
preferable to be able to provide solar panels and
rechargeable batteries. Moreover, users might want to
choose more appropriate computing and wireless
communication devices according to the power
consumption and required processing/transmission
speed. To meet these kinds of requirements, the
hardware components of the sensor node should be
constructed as an ensemble of independent modules
that can be easily replaced. However, conventional
sensor network nodes [13][15][16] such as MICA
Mote only allow replacement of the sensor board.
Other components such as the microprocessor and
wireless communication module are not replaceable.
In order to achieve this flexibility, we divided the

functionality of the sensor node into four physically
separated modules: a power control module, a
processing module, a communication module and a
sensing/actuating module. Each module is then
connected to others by a bus connector to achieve
extensibility.

3.1.4. Software Design

Due to the small physical size of the sensor nodes and
the limited power consumption, software on the sensor
node hardware must make efficient use of processor
and memory while providing low-power
communication. In this section, we describe task
scheduling and application programming interface
(API) layering in the sensor node.
1) Event and task scheduling
In general, one sensor node plays several roles in the

sensor network. For example, information may be
simultaneously captured by sensors, manipulated, and
streamed onto a network. Alternatively, data may be
received from other nodes and forwarded in multi-hop
routing or bridging situations. To realize such
concurrent execution using such resource-restricted
hardware, we allow the interruption of tasks by events.
Here, an event is defined as a process that must be
executed immediately and is assumed to complete
immediately, such as the arrival of wireless packets. A
task is defined as a process that takes longer than an
event to complete, such as the periodic capturing of
environmental data. Event-based task scheduling
incurs only a low overhead for state transition
compared to a stack-based approach. Accordingly, this
scheme reduces processor load and power
consumption.

A media access control (MAC) algorithm
significantly improves the system performance of the
sensor nodes. Specifically, MAC ensures accurate
synchronization between sending and receiving nodes,
which is crucial for high-speed, reliable transfers. As
application tasks can be frequently interrupted by
wireless communication events, an additional
microprocessor dedicated to wireless communication
and application tasks is provided to reduce the load on
the main processor.
2) Functional layering
The primary objective of U3 is to provide a testbed

sensor network for the development of ubiquitous
computing environments. Having a testbed
development environment is essential for the
innovation of attractive applications. For example, if a
user wants to design an appropriate communication
protocol for a specific application, it would be useful if
various APIs for controlling communication
functionality could be provided in the development kit.
While TinyOS [17] is a component-based runtime
environment designed to provide support for
embedded systems such as MICA Motes (UC
Berkeley), it does not provide a separate
communications module. To date, we have defined
several APIs that provide layered abstracted
communication functions (application, media access,
physical layer of RF and IrDA 1.0). This layering
allows developers not only to reuse the APIs but also
to concentrate on the development and evaluation of
the specific functions or protocols in which they are
interested. Of course, it is conceivable that
conventional layering may no longer be valid for
sensor networking. In that case, however, developers
can choose not to use the APIs and conventional
layering.
Communication Module: this module consists of an
RF monolithic transceiver (300 MHz band, On-Off
keying, 115.2 kbps), a helical antenna, and second PIC
microcontroller for processing network protocols. The
current implementation realizes data transmission of
up to 100 kbps with our current implementation of the
carrier sense multiple access/collision avoidance
(CSMA/CA) protocol. The transmission range is
within a radius of 30 m. The communication module
hosts a dedicated processor to drive the RF transceiver.
As mentioned in the previous section, it is possible to
implement various MAC and network layer protocols
using this processor.
Sensor/Actuator Module: the sensor module is
dedicated to obtaining information about the
surrounding environment. The implementation of the

sensor node only includes a motion sensor, a
brightness sensor, and a thermometer, but various
transducers can be connected to the board via a generic
bus connector.
3) Software Implementation

Figure 9 shows the software architecture of U3. We
adopted C as the programming language due to the
wide availability of commercial C compilers, which
provide plenty of built-in functions for handling
features such interrupts.

Figure 9. U3 software architecture

The U3 software consists of the application software,
wireless communication software, and a development
environment. The application software and wireless
communication software are implemented in PICs on
the main processor board and the wireless
communication board, respectively. Messages between
the software travels via the I2C bus.
Application software controls the sensor and

actuating devices, and forwards processed data to the
wireless communication software. Multiple tasks are
scheduled in a first in, first out (FIFO) task scheduler.
The application software also provides APIs for
communicating with a computer or PDA (via IrDA), as
well as other nodes (via the RF module). After all tasks
in the scheduler have been processed, the system sets
the main processor in sleep mode to save power. Timer
events generated by the calendar integrated circuit (IC)
and packet arrival events generated by the IrDA chip
and the wireless communication software can wake the
main processor.
The wireless communication software provides APIs

that bridge the application processor and the wireless
RF modules. The wireless communication software
includes a routing protocol and MAC protocol, which

are implemented independently such that each of the
protocols can be replaced according to user
requirements. In the physical layer, we provide
periodic transmission and reception control for the RF
communication module. The RF module transmits data
by amplitude shift keying (ASK), where each bit is
encoded with the Manchester Code, and encoded data
is sent after the transmission of a preamble (1 Byte)
and header (2 Bytes).

3.1.5. Related works

MICA Motes and U3 share a similar motivation: to
develop an off-the-shelf sensor network testbed.
However, they differ on several points. Although
MICA Motes and U3 use similar RF wireless
communication modules for communication between
nodes, the frequencies used differ due to legal
regulations (the 916 MHz used by MICA Motes is
restricted to transmission over less than 1 m in some
countries including Japan). In U3, we use two PICs, as
a processor and network controller. Compared to the
ATMEL 90LS8535 controller installed in MICA
Motes, PIC has advantages with respect to power
consumption, particularly with the sleep mode feature.
Due to the use of these two controllers, U3 therefore
has a potential advantage in terms of power
consumption. In addition, MICA Motes is only
equipped with replaceable sensor board; in U3, both
the sensor board and main processor, network and
power modules can be replaced. IrDA communication
with other peripheral device is also unique to U3.
Finally, TinyOS as used by MICA Motes provides
event-based development environments, but does not
provide layering of the network stacks due to the
monolithic networking module.

4. Middleware technologies

The technologies we have introduced to make an
environment “smart” represent fundamental
components for realizing ubiquitous computing, but a
“glue” for creating applications and services is
required. This glue is implemented in the form of
middleware to coordinate the ubiquitous devices on the
network, and forms an indispensable part of the
system. As ubiquitous computing environments can be
expected to be highly dynamic, heterogeneous, and
context-dependent, the functionality of applications
should be able change depending on the dynamically
changing user context. For example, when a user
wishes to brows a portable document format (PDF) file
on a PDA display, the document-browsing application
running on the PDA will require an additional

transcoder function to reformat the PDF file. If the
user wishes to use a voice-only device such as a
personal digital cellular (PDC) to obtain information in
the PDF document, the application will need to locate
and use a PDF-to-text function as well as a text-to-
voice function. Thus, to enable ubiquitous Internet
applications with adaptable functionality on the fly, a
mechanism capable of finding and synthesizing the
appropriate functions transparently on the Internet is
necessary.

4.1. STONE
Our group is currently developing the STONE

network service platform, which dynamically
synthesizes a desired context-aware service from a set
of resources. STONE provides service discovery,
context awareness, service synthesis, and service
mobility in a unified way using a naming service
[18][19].
Figure 10 depicts the STONE architecture. STONE

has three major components: a functional object, a
service resolver, and a service graph. The functional
object is the most basic element of a service, and has
the mechanisms required for providing the requested
service by dynamic linking to another functional
object. Functional objects may be either hardware or
software, and include objects such as the display, a
camera, speaker, microphone, various types of
transcoders and proxies, and streaming videos. A
synthesized service is a string of functional objects
such as the dynamic combination of functions of the
source of world news, a transcoder, and a display.

Figure 10. STONE architecture

In this system, even if a change in the environment
around the functional object or user occurs, the service

can be maintained and be transparent to mobility or
failure as long as the functions composing the service
can be maintained (i.e., distribution transparency).
Alternatively, the service provided can be tailored to
the environment by modifying one function into a
more appropriate function as the environment changes
(i.e., context awareness).
STONE achieves distributed transparency and

context awareness through appropriate naming of
functional objects. Networking systems are
traditionally organized using a layering model
composed of applications, transport/networks, and link
layers. This model is useful for clearly defining the
responsibilities and restrictions of software that exists
at each level. To be implemented fully, a layer requires
a naming scheme, a means of resolving those names,
and a means for routing communications. On the
Internet, the naming types used in each layer include
MAC addresses in link layers, IP addresses in network
layers, and URLs and email addresses in the
application layers. In STONE, we extend the model to
include a new top layer.
 STONE adopts location-independent naming for
describing the objects being searched for by users
and/or applications, not the location of those objects.
Current naming types for IP addresses and URLs
specify the network location of server and client
machines, and as such these names are location-
dependent. The advantage of location-independent
naming is to be able to achieve distributed
transparency with respect to access, location, failure,
and replication. Location-independent naming allows
nodes that provide a function to precisely describe
what they provide and users to describe what they
require. This makes it possible to achieve service
discovery, context awareness, service synthesis, and
service mobility in a unified way. The following is an
example of STONE naming. Every name is
represented as an attribute-value pair, and includes an
interface name for describing the function of a
functional object.
[FO Name =
 [Location=x.y.z@myhome.net], //Physical Location
 [InterfaceName= //Function Description
 [Output Interface = Rendered Video],
 [Input Interface = MPEG4/IP],
 [Relation = Convert Input Interface to Output Interface],
 [Ctrl Interface = Display Control/GUI]
]
]
[Access Pointer List= [Address=xx.xx.xx.xx:yy], //IP+Port]

Location-independent naming, however, often has a
flat name space, resulting in a scalability problem, in
contrast to location-dependent naming such as DNS
which has a hierarchical name space. The introduction
of interface names in STONE naming mitigates the
scalability problem by grouping interface names to
form a two-level hierarchy.
The service resolver network overlaid on the Internet

is used to route a request to the appropriate locations
by maintaining a mapping between interface
descriptions and their network locations. The service
resolver network is a logical overlay network, and
finds and connects functional objects using interface
names. As an IP router routes data by examining its
destination IP address, the service resolver routes data
by examining its interface name.
The service graph specifies the service request of a

client, for example,”I would like to see the camera
images for room 409 on the nearest monitor”. The
service graph may be created by the client, or may be
downloaded from the network. It describes the
interconnection between functional objects (e.g., to
connect a camera output function with a monitor input
function), and a context script to specify context
awareness explicitly (e.g., to select the output function
of the nearest monitor). When a user issues a service
graph, STONE finds suitable functional objects and
synthesizes the requested service by combining several
functional objects dynamically in a context-aware
manner.
We have implemented STONE in a testbed room and

constructed several application prototypes, including
mobile video conferencing, a ‘connect to’ service, and
a ‘media kitchen’ service. The locations of objects and
people can be determined using the indoor positioning
system installed in the testbed room.

5. Conclusion

In this paper, we have introduced our approach for
realizing a ubiquitous computing environment. Our
smart space testbed is comprised of networked
appliances, a device control system (Smart Baton), an
ultrasonic location system (DOLPHIN), wireless
sensor nodes (U3), and service synthesize middleware
(STONE). This testbed is unique in that research on
both hardware and software are conducted using a
single testbed environment with coordination between
research topics.
Our next step is to develop a variety of context-aware

applications using these technologies, and deploy these
applications in the smart space. It is only through such

practical experimentation that the real functionality of
ubiquitous computing can be realized and new
research opportunities be discovered.

6. References

[1] Berners-Lee, T., “Answers for Young People,”
http://www.w3.org/People/Berners-Lee/Kids

[2] Johanson, B., Fox, A., and Winograd T., “The
interactive workspaces project: experiences with
ubiquitous computing rooms,” IEEE Pervasive
Computing, Volume 1 , Issue 2 (April 2002), pp. 67 –
74, 2002

[3] The Aware Home, http://www.cc.gatech.edu/fce/ahri/
[4] Brumitt B., Meyers, B., Krumm, J., Kern, A. and

Shafer, S., "EasyLiving: Technologies for intelligent
environments," Proc. Handheld and Ubiquitous
Computing, September 2000

[5] The Smart-Its Project, http://www.smart-its.org/
[6] Smart Space Laboratory,

http://www.ht.sfc.keio.ac.jp/SSLab/
[7] Sun Microsystems Inc., JiniTM Network Technology,

http://wwws.sun.com/software/jini/, 2000
[8] UPnP, Universal Plug and Play Forum,

http://www.upnp.org, 2002
[9] Brouwer-Janse, M.D., Bennett R.W., Endo, T., vanes

F.L., Strubbe, H.J., and Gentner, D.R., “Interfaces for
consumer products: 'How to camouflage the
computer?” Proc. CHI'1992, pp. 287-290, 1992

[10] Olsen, D. R., and Nielsen, T., “Laser Pointer
Interaction,” Proc. CHI '2001, pp. 17-22, 2001

[11] Ward, A., Jones, A., and Hopper, A., “A new location
technique for the active office,” IEEE Personal
Communications Magazine, Vol. 4, No. 5, pp 42-47,
1997

[12] Priyantha, N.B., Miu, A.K.L., Balakrishnan, H., Teller,
S, “The Cricket Compass for contextaware mobile
applications,” Proc. MOBICOM 2001, 2001

[13] Savvides, A., Han, CC, and Strivastava, M. B.,
“Dynamic fine grained localization in ad-hoc sensor
networks,” Proc. MOBICOM2001, 2001

[14] Pottie, G. J., and Kaiser, W. J., “Wireless integrated
network sensors,”Comm. ACM, Vol. 43, pp. 51–58,
2000

[15] SCADDS, Scalable Coordination Architectures for
Deeply Distributed Systems,
http://www.isi.edu/scadds/

[16] WEBS, Wireless Embedded Systems,
http://webs.cs.berkeley.edu/

[17] TinyOS, http://webs.cs.berkeley.edu/tos/
[18] Minami, M., Sugita, K., Morikawa, H., and Aoyama

T., “A design of internet application platform for

ubiquitous computing environment,” IEICE Trans.
Comm., vol. J85-B, no. 12, pp. 2313-2330, 2002

[19] Minami, M., Morikawa, H., and Aoyama T., “The
design and evaluation of an interface-based naming
system for supporting service synthesis in ubiquitous
computing environment,” IEICE Trans. Comm.,
vol.J86-B, no.5, pp.777-789. 2003

