Implementation-based Approach for Designing
Practical Sensor Network Systems

Masateru Minamif, Shunsuke Saruwatarif, Takuya Kashimai, Takashi Moritof,
Hiroyuki Morikawai, and Tomonori Aoyamaj

tShibaura Institute of Technology (3-9-14 Shibaura, Minato-ku, Tokyo, Japan)
1The University of Tokyo (7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan)

Abstract — Wireless sensor network technologies are ex-
pected to be a key technology to support various innovative
applications in the future ubiquitous computing environment.

So far, the main stream cf sensor network research has
been focused on simulation-based development cf battery-
aware communication protocols. However, when we apply
sensor network technologies to practical applications such
as environmental monitoring or factory automation, we will
find a lot cf practical problems that are not considered in
simulation-based approach. We believe that finding and solv-
ing such practical problems are quite important for deploy-
ing sensor network technologies beyond laboratory use.

From this point cf view, we have been trying to find such
problems through various implementations cf sensor net-
work system for several years. This paper describes our
opinions cf designing sensor network system and introduces
our approaches for developing practical systems.

Keywords: Sensor Network, Software Development Kit,
Battery-awareness, Localization

1 Introduction

Integration of physical information in computer networks
is expected to enhance the potential of computer network ap-
plications beyond traditional e-mail and web applications in
the future ubiquitous computing environment. For example,
location information will enable context-aware applications
that provide appropriate services depending on user ’ s situa-
tions and global-scale physical information will provide new
knowledge to the natural sciences. Usually, such physical in-
formation will be obtained from sensor networks embedded
in physical space.

Generally, the term “sensor network” includes wide vari-
ety of technologies, but wireless sensor network is attracting
great deal of attention because of its flexibility. Usually, a
wireless sensor network is considered as a distributed system
which consists of huge number of tiny sensor nodes. Each
node has a microcontroller, wireless communication device,
and sensors. In particular, to disseminate sensors in vari-
ous environments, sensor nodes are assumed to be battery-

powered, and this defines various features of wireless sensor
network; each sensor node has limited resources and com-
munication protocols must be lightweight and battery-aware.

To tackle these technical challenges, there have been a
lot of researches on wireless sensor networks including soft-
ware, hardware and communication technologies[1]. Among
these researches, designing battery-aware communication
protocols has been the main stream of research on wireless
sensor networks for recent years. However, in a practical
sense, only developing battery-aware communication proto-
cols is insufficient to develop workable sensor network sys-
tems and deploy it in actual environment. In addition, almost
all researches are done based on computer simulations, and
this blinds actual problems that should be solved in wire-
less sensor network systems. Needless to say, we do not
mean simulation-based approach is meaningless, but feed-
backs from both implementation and management of practi-
cal system are also important to design practical sensor net-
work systems.

In contrast to this trend, recently, various wireless sensor
network platforms, such as MICA Mote[2] and Smartlts[3],
have been developed. In particular, MICA Mote is the pio-
neer work in implementing wireless sensor network system,
and several practical problems are found out through imple-
menting applications on it. However, since MICA Mote is
designed as a general purpose system, it implements quite
fundamental functionalities to construct wireless sensor net-
work system.

On the other hand, to support practical applications, there
still remain a lot of problems that should be solved through
various implantations and experimentations. Verification of
previously proposed communication protocols and develop-
ment of viable localization scheme are examples of such
problems that we can not neglect.

From this point of view, we have been implemented and
evaluated various hardware and software systems to inclu-
sively tackle to practical problems in wireless sensor net-
work for several years. Through our work, we concluded that
a flexible testbed for implementing various communication
protocols and applications, battery-less technology for sup-

plying power to each sensor node, and precise localization
mechanism are essentials to design practical sensor network
systems.

In the following sections, we introduce our developed
technologies that are our solutions to the previous three
charenges.

2 Flexible Sensor Network Testbed
2.1 Background

Wireless sensor networks have been assumed being used
in outdoors such as battlefield and environment monitoring.
Many research groups have proposed a number of routing
protocols and MAC (media access control) protocols, for
battery powered and resource limited sensor nodes. The re-
searches have studied using computer simulation. An attrac-
tive concept of wireless sensor networks had much effect on
a lot of people, and many applications of wireless sensor net-
works start to be considered. To create new applications and
to validate proposed protocols in practical use of the appli-
cations, a hardware testbed for wireless sensor networks is
much awaited.

Toward these demands, several hardware platforms, like
MICA mote or Smart-Its, have been developed. These plat-
forms realized miniaturization and low-cost by transacting
communication tasks and application tasks in one CPU.
However, implementing the tasks to one CPU can’t fulfill the
diverse demands of application and communication mecha-
nisms for wireless sensor networks. For example, an appli-
cation developer is restricted to implement application if he
uses time sensitive MAC protocols in one CPU architecture.

From these points of view, we design and implement a
software and hardware framework for wireless sensor net-
works “PAVENET” which supports to construct various
applications[5]. PAVENET includes U? that is a hardware
module for development, U® SDK that is software develop-
ment kit for U3, and basenode software that supports devel-
opment of application and operates with personal computers
and PDAs.

U? has two CPU oppose to MICA or Smart-Its: one CPU
is for application, the other CPU is for communication. This
2 CPU architecture provides us some merits in following
points. First, it gives us to develop applications and commu-
nication protocols easily. Typically, an application developer
and a communication protocol developer are two different
developers. Therefore not considering overhead of applica-
tion and communication’s tasks each other is important to de-
velop software easily. Next, it gives us to evaluate communi-
cation protocols, such as MAC protocols, easily. Since com-
munication protocols and application are separate in hard-
ware, we can purely evaluate the communication protocol’s
characteristics like power consumptions. Finally, it helps us
to consider oncoming development in hardware. If we ex-
amine low power consumption and miniaturization of wire-
less sensor nodes, we have to implement a part of functions
in hardware. Especially, since implementing media access

Shared bus connector

Power“supply .
board

Communication

System board Device board

S

U?-UsB

Figure 1: Hardware organization

control protocols in hardware expects reducing much energy
consumption, dividing communication and application tasks
to 2 CPU is effective.

2.2 Architecture

We implemented software and hardware framework for
wireless sensor networks PAVENET, which provides support
to construct various applications. PAVENET includes U?
that is a hardware module for development, U? SDK that
is software development kit for U?, and basenode software
that supports development of application and operates with
personal computers and PDAs.

Figure 1 shows each boards, and U? and U2-USB that are
constructed by four boards.

U? is a 50mm x 50mm x 50mm box that contains four
function boards which are a power board, a system board,
a communication board, and a device board. And four
boards are power supply board, system board, communica-
tion board, and device board. The boards are connected by a
2.54 mm pitch shared bus connector with each other.

U2-USB consists of communication board and I2C -USB
conversion board. It is a communication interface to control
the wireless sensor nodes from personal computers.

The following describes the details of each board.

The power supply board has three AAA 700 mAh nickel
metal-hydride batteries and external DC input for charge.
Furthermore, it supplies 3.0 V to other boards, gives infor-
mation about battery life, and output current to the shared
bus connector. System board can know remaining amount of
battery life and energy consumption through the shared bus
connector.

The communication board consists of an RF Mono-
lithics 315Mhz transceiver TR3001, a Microchip 8-bit
MCU PIC18F452 that runs at 20MHz, and a helical an-
tenna. PIC18F452 has 8-bit registers, 1.5KB data mem-
ory, 16KB program memory, 256 bytes EEPROM, and con-
trols TR3001, and processes communication software of U3

System board
System Software

Communication board

Communication Software

Application

Low-level communication library

High-level

communication
T iba
Shared library
Task scheduler

Rf module 12C

12C bus communication

1/0O device library

1/O Devices

2,
rC Sensors, etc.

Figure 2: U? SDK

SDK. The communication board provides I12C interface to
the shared bus connector.

The system board consists of the same Microchip
PIC18F452 as communication board and IrDA 1.0.
PIC18F452 runs at 10 MHz, and processes system software
of U SDK.

The device board can equip various sensors or actuators,
which are controlled by the system board. The device board
provides some interfaces to the shared bus connector. The
interfaces includes voltage that presents information such as
temperature, a port that presents 1 bit data, a port that con-
trols the device, and I2C interface.

Currently, we have implemented sensor board that has a
motion sensor, a temperature sensor, and an illuminance sen-
sor, for test.

U? SDK is software development kit, and supports system
software and communication software which are processed
by system board and communication board, respectively. We
use HI-TECH Software PICC18 compiler for the develop-
ment of U? SDK. U? SDK is designed strongly concerning
network layering, and supports to realize various users’ de-
mands.

Figure 2 shows the structure of U?> SDK. Both of the sys-
tem software and the communication software have the same
task scheduler and shared library. The task scheduler has
lightweight multithreading architecture, and supports hard
realtime transaction. Shared library consists of various APIs
that are for task operation such as add_task, trigger_task, re-
sume_task, etc., and for debugging such as exit_u3.

The system software consists of high-level communica-
tion library, I/O device library, and utility daemon. As the
components are triggered by interruption and the transaction
are designed to complete immediately, we can keep a large
percentage of CPU state idle, and achieve low power con-
sumption.

High-level communication library transacts data aggrega-
tion and adhoc routing, etc. It is said that packets shall route
data centrally and application specifically in wireless sensor

networks[4]. Users can expand functions, such as routing,
by describing transaction in event handlers like on_net_recv.
U? SDK also provides APIs, which enable us to gain inde-
pendence from various protocols. Hence, we can replace
network protocols by trial and error. The APIs include
set_net_opt or get_net_opt which are used when setting desti-
nation addresses or getting source addresses.

I/O device library provides a structure that abstracts in-
terfaces such as I2C , UART, ADC, etc., by open/read/write
functions.

The communication software consists of low-level com-
munication library and utility daemon.

The low-level communication library transacts communi-
cation functions in physical layer and MAC layer, which will
be implemented in LSI in the future. In PAVENET, these
functions are implemented by software with consideration
of prospective implementation in hardware because of flexi-
bility of software. Especially, the low-level communication
library supports for a part of adhoc routing functions such
as source routing, flooding, etc. in simple network layer.
These simple adhoc routing functions can be realized in low
memory consumption and simple scheme. Hence, they can
be implemented by hardware. To transact a part of adhoc
routing in communication software reduces loads of system
software, and it will accomplish prospective low power con-
sumption and miniaturization.

Utility daemons give us an interface to set protocol param-
eter, and to record communication log by providing control
interface layer. Control interface layer works with low-level
communication library.

The basenode software runs on PC or PDA to utilize wire-
less sensor networks. It consists of command line utility,
protocol translation gateway, and basenode library.

Command line utility can be used from command line, and
includes pvnload which loads program to U?, pvnget/pvnset
which can get/set parameters of U?, and pvnping which is
used for confirming sensor nodes existence or used for mea-
surement of packet delivery time.

Protocol translation gateway works on PC that equips
U2-USB , and it allows users to access to sensor networks
through the Internet.

The basenode library provides APIs which are arranged
from functions of command line utility, and it is used when
user develops an application for wireless sensor network
without command line utility.

2.3 Applications

We are developing a sensor network application called
ANTH (ANtennary Things) using PAVENETI[6].

In ubiquitous computing environment, communication
and computation functions are embedded in every object
around us, and this enable us to synthesize various services
by combining these objects.

Many service coordination frameworks, such as UPnP,
Jini, and Bluetooth, have been proposed until now. These
frameworks are useful to construct conventional services or

Alarm Button

Light U

Figure 3: Prototype Implementation

static services, because they are designed for configuring de-
vices automatically or replacing cable with wireless. These
technologies remove annoying entwining cables and com-
plex device configuration from us. However, they never pro-
vide us creative environment that enables us to construct var-
ious services.

In view of this, we are developing real-space programming
framework called ANTH (ANtennary THings) for ubiqui-
tous computing environment. ANTH aims to construct pro-
grammable real-space that enables us to create our desired
services by ourselves. ANTH provides a chip that has three
characteristic functions: a user interface function that con-
trols connecting one device and another device, a commu-
nication function that constructs a network infrastructure for
device cooperation, and a computation function which drives
devices and processes applications. The chip is called ANTH
chip, and an object that equips an ANTH chip is called
ANTH object. We assume, in the future, ANTH chips are
embedded to all everyday objects around us, such as alarm
clocks, lights, walls, and so on.

Figure 3 shows 4 implemented ANTH objects: a light,
an alarm clock, a button, and a U? which is wireless sensor
node. The light and the alarm clock bell work as SNs, the
alarm clock timer, the motion sensor of U? , and the button
work as ENs, and laptop acts as a controller. We have tested
the basic operation of the Bind Control Model using these
four types of nodes. For example, the motion sensor event
bounded to the alarm clock bell realizes instant security sys-
tem, which tells us intrusion of someone by ringing the bell.

3 Battery-less Technology
3.1 Background

In many researches on sensor network systems, a sensor
network node is usually assumed as a battery-powerd device.
And in many cases, such device is considered as a disposable
device, and is assumed to be scattered in various environ-
ments. Based on these assumptions, a lot of battery-aware

communication protocols have been proposed. However we
believe that such battery-powered and disposable devices are
not acceptable for practical sensor network applications.

In many consumer applications, there are few applications
utilizing disposable sensor devices. Usually, disposable de-
vices are only acceptable for military or disaster applications.
For example, if we apply sensor network for monitoring tem-
perature in a large plastic green house, we may not leave
lots of dead sensor network devices in the environment be-
cause such devices and dead battery become obstacles for
farm work and are harmful for products. This means that we
have to replace or recharge huge amount of dead batteries if
we apply battery-powered wireless sensor network systems
for various consumer applications. Needless to say, doing
such maintenance is unrealistic.

On the other hand, there have been developed lots of tech-
nologies for obtaining electric power without batteries. For
example, we can obtain electric power from light, wind, heat,
and vibration through various conversion devices. If we can
utilize such energy sources for driving sensor network de-
vices, we need not to care about battery problem in sensor
network systems.

From this point of view, we have developed a prototype
of battery-less sensor network system called “ Solar Biscuit
” . The Solar Biscuit system consists of many Solar Biscuit
devices, and each device employs a super capacitor equipped
with a small solar cell for its energy source.

The major difference between the Solar Biscuit device and
conventional sensor network device is that the device has
rechargeable energy source. Hence, communication mech-
anism of the Solar Biscuit system must be designed by con-
sidering not only power consumption but also power charg-
ing.

3.2 Solar Biscuit Design

The Solar Biscuit device implements a one-chip MPU
(MICROCHTIP PIC 18LF452, 7.3728 MHz), a 315 MHz RF
module (CHIPCON CC1000), and a Temperature and Hu-
midity sensor (SENSIRION SH11) on a 5 cm x 5 cm main
circuit board. A 5 V 1.0 F super capacitor (NEC TOKIN,
FTOH105Z) equipped with A 5 cm x 5 cm solar cell (SHELL
SOLAR, Monolithic Silicon Solar Cell) provides energy to
the device. The MPU in the Solar Biscuit device can mea-
sure the charge level of super capacitor through an internal
A/D conversion circuit. If the charge level is less than 3.5
V, a CMOS reset IC (ROHM BD4835G) shuts down the mi-
crocontroller (i.e., the MPU must enter sleep mode before
charge level becomes less than 3.5 V). If the charge level
becomes 3.675 V, the reset IC restarts the MPU.

Our interest in designing the Solar Biscuit system is to
develop a novel communication mechanism for battery-less
sensor network system based on requirements from practical
consumer applications. At the start of designing such com-
munication mechanism, we set the target application of the
Solar Biscuit system. In our opinion, the most suitable ap-
plication of the Solar Biscuit system is environmental moni-

i

Temperature
Solar Cell (ggzgg;%) and Humidity
‘ Sensor (SH11)

5V 1.0F

]
Q—Ti Power Line
Super

Microcontroller RF Module
(PIC 18LF452) (CC1000)
Capacitor \

o Charge Level
Figure 4: Hardware Implementation

Normal Mode
' ' (Monitoring Mode) ,
' I
MPU ! Monitoring | Poor Energy ! Good Energy: Entering Emergency Mode(
Halting, Charge | Condition | Condition | MPU is Transmitting an
| : Level 1(Long lnterval)gshort Interval) Emergency Message)
i
|
L]
T
!
|

440 — f ; =
420 f— : /‘(A‘/ W F
= || i 1
T 400 |— . —
8 : / i
- ' | i
Q 1 /] [
£ 380 [——#Communication Started b T //
< ' I T/ L
o /([Emergency Event Occurred| % L
3.60 \ 0
MPU Waked Up
L|—|—‘ MPU Halted™™
340

0.0 20.0 40.0 60.0 80.0 1000 1200 1400 160.0
Elapssed Time [Sec]

Figure 5: Behavior of Solar Biscuit Node

toring application. Usually such application does not require
high data rate and is not so sensitive to delay in normal op-
eration. For example, let’s consider the system reports tem-
perature in a plastic green house in a certain interval. In this
case lack of several data packets is not so important prob-
lem. However, in an emergency situation (e.g. unusual tem-
perature is detected at a device), the system must send this
important event to a sink as quick as possible.

3.3 Communication Strategy

In order to support such kind of application, we designed
an elementary communication strategy, which has both nor-
mal and emergency modes operation, for Solar Biscuit de-
vices. In this communication strategy, we assume that a So-
lar Biscuit device can decide the optimal time ratio of both
active and sleep mode based on provided power from solar
cell (Figure 5). Here, the active mode means MPU and RF

420

418
é‘; 416 1 [Sending RF — 1 ”_f
8 Messages | |~ ‘V,—T Vr
i}
% 414 f-\r'f

AN e
412 /—
Checking Emergency Beaconl
4.10 | | T

1.0 20 3.0 40 5.0 6.0 70
Elapssed Time [Sec]

Figure 6: Example Communication Cycle

module are in active mode. Sleep mode means MPU and RF
module are in low-power sleep mode, but awakes for a short
period of time to hear emergency message (Figure 6). Note
that each Solar Biscuit device charges its super capacitor in
sleep mode.

The key point in the normal mode operation is to maxi-
mize network availability by randomizing sleep time at each
device. As shown in Figure 7, when a device awakes from
sleep mode, it sends a “ good morning message ” to neigh-
boring devices. If an active device hears messages from more
than predefined number of active device, it extends its inter-
val of sleep time based on a certain probability. When a de-
vice has a data to send to a sink node, it simply floods the
data to active devices. Thus, the data is forwarded to the
sink by active devices in turn. The data has a Time-To-Live
(TTL), and if the TTL expires, the data will be dropped.

On the other hand, once an emergency event is occurred,
the system enters emergency mode operation. In this case,
a node detecting the emergency event awakes all nodes in
the system by sending an emergency message. After that, an
emergency data is sent to a sink via flooding.

Untill now, we have just finished implementation of hard-
ware and communication software of the Solar Biscuit sys-
tem. Although our implementation is basically success-
ful,more detailed evaluation is required to make system more
practical. Currently, we are measureing various characteris-
tics of the system including error ratio, throughput, and avail-
ability of the Solar Biscuit network to obtain good feedbacks
for designing better communication protocol.

4 Precise Localization
4.1 Background

For sensor network systems, physical location of sensor
network node is one of the key information to support various
applications. This is because sensor network systems deal
information which is highly depending on physical space.
In other words, without location information the information

o N\
Device 1 Active| Sleep m
ood Morning Message
Device 2 I_—l_ m
Device 3 _'__‘__,_L
Randomize
Device 4 _,__I—,__|_

Communicate with CSMA =
Initial State Steady State
(a) Basic Communication Strategy
] A

=
[O Device in Active Mode O Device in Sleep Mode

O Flooding, O Flooding
Flooding O (@)
) ® oo o/i.o
O sink (@]
Source o O
O O
Step 1 Step 2 Step 3
(b) Message Forwarding in Steady State)
O
Emergenc O [\
: O ©) - £
Messa{ O ‘
O Sin
Source o) <.
O @)

Emergency Event Occurred Flood Emergency Message All Devices Wake UP

(c) Message Forwarding in Emergency Mode

Figure 7: Communication Strategy

obtained from sensor network is meaningless.

Usually, we can easily obtain precise location informa-
tion in outdoor environments by using the global position-
ing system (GPS). However, applications, such as factory
automation, plant monitoring, and indoor context-aware ap-
plication, require more precise location information. More-
over, the GPS is usually available only in outdoor environ-
ment. Therefore, researches on location systems have fo-
cused mainly on systems that can provide more precise loca-
tion information and that is available in indoor environment.

To archive such goals, several positioning systems have
been proposed. Active Bat[7] and Cricket[8] use ultrasonic
pulse TDOA (Time Difference of Arrival) to measure high
precision 3D position and orientation in indoor environment,
but they require an extensive hardware infrastructure. How-
ever, such systems usually require manual pre-configurations
of the locations of reference beacons or sensors. The setup
and management costs would be unacceptably high if we ap-
ply them to large scale environment such as an office build-
ing. Ad-hoc localization mechanism described in [9] can
be applied to such problem. 1In [9], the authors proposed
collaborative multilateration algorithm to solve localization
problem in a distributed manner, and performed detailed
simulation-based analysis of a distributed localization sys-
tem. To design practical location information infrastructure,
we believe that experimental analysis is also needed to dis-
cover practical problem in distributed localization system.

From this point of view, we have developed a distributed
positioning system called DOLPHIN (Distributed Object Lo-
calization System for Physical-space Internetworking) that
can determine objects ~ position using only few manually

Reference 1
S (%3 ¥ 27)

Distance r,
Distancx

O Unlocated Object (x, y, 2)

DistaV Dis:eu’u:e\g‘k

Reference 3 (X3 ¥y Z5)

Reference 2

@ (Xz ¥z 2))

Reference 4

(Xg Yo 24)

Figure 8: Iterative Multilateration

configured references. The system is made from off-the-
shelf hardware devices, and implements a simple but prac-
tical distributed positioning algorithm.

4.2 DOLPHN Design

Basically, the DOLPHIN system determines location of
various object based on a TOA (Time of Arrival) position-
ing technique. Figure 1 illustrates the principle of the TOA
positioning. In order to determine an unlocated object posi-
tion in three dimensions (z,y, z), ultrasonic-based distance
measurements are made to four references resulting in the
following equations:

ri= (@ —2)?+ (Y —)2 + (2 — 2)? ()
where (x;,y;, z;) denotes the position of the i-th reference,
and r; is the distance between unlocated object and the refer-
ence. The distance is measured by using TOA of ultrasonic
pulses, and RF signal is usually used for time synchroniza-
tion. The position of the unlocated device is determined by
solving the above equation for four or more references.
Based on this positioning principle, we apply the idea of
iterative multilateration to our system. Figure 8 illustrates
the basic idea of the iterative multilateration technique. In
the initial state, devices A, B and C have precisely measured
positions, and the positions of the other devices are unknown.
In the next step, device D, which can directly receive signals
from devices A, B and C, can determine its position (here, we
assume that one device can compute its position by receiving
three or more signals from the references). However, devices
E and F cannot yet receive a sufficient number of signals to
determine their position due to such physical obstacles as
the wall. Here, if the position of device D is determined and
device E can receive a signal from device D, device E can
compute its position by using signals from devices B, C and
D. If the locations of device D and E are determined, device
F can compute its position using devices C, D and E. In this
way, all devices can be located.
However, iterative multilateration is just an idea to locate
huge numbers of objects by using a small number of refer-
ences. To develop a practical system, we should consider not

Ultrasonic Transducer
Module (5ch)

Temperature
Sensor

H8S/2215
(16 MHz) [|Interface
| |

Power Suppl
(USB or Ba{’t"eryy)lm MHz / 2400 bps

USB Interface

utside View

Figure 9: Implementation of DOLPHIN systemy

only how to apply iterative multilateration to our system, but
also how to reduce positioning error that occurs in actual en-
vironment. To find error factors in iterative multilateration,
we have implemented and tested the DOLPHIN system.

4.3 Implementation and Evaluation

Figure 9 illustrates a block diagram of the DOLPHIN de-
vice. To implement iterative multilateration, bi-directional
ultrasonic transducers are used for both sending and receiv-
ing ultrasonic signals. As shown in the bottom of Figure
9, we attached five transducers to the cylindrical module to
extend the coverage of the ultrasonic signals in every di-
rection. The DOLPHIN device also has a 2400-bps, 10-
channel, 429-MHz RF transceiver for time synchronization
and the exchange of control messages. A one-chip micro-
controller controls both the ultrasonic transducer and the RF
transceiver, and calculates a device s position by perform-
ing multilateration. The microcontroller detects the received
signal strength information of the ultrasonic signal at each
transducer via internal A/D converters. This implementation
enables us to estimate angle of arrival of ultrasonic signal
based on received signal strength at each transducer. This
CPU has a USB interface, and we can pull location data out
through the USB interface as well as supply power to the de-
vice by attaching the device to a USB-enabled device such
as a laptop or a PDA.

After implementing the system, we have investigated er-
ror factors of our system in various situations of an actual
room environment. Through our experimentations, we found
that there were two major factors leading to errors in the
DOLPHIN system: error accumulation and no-line-of-sight
propagation of ultrasonic signals. The error accumulation is
caused by the structural characteristic of iterative multilatera-
tion, in which an unlocated node that can estimate its position
using references becomes a new reference. Hence, the new
reference accumulate positioning errors of references that
are used by the new reference. The no-line-of-sight propag-
tion problem occurs when there are many obstacles in the

250

N
o
S

o
o

o
S

. UnlocatedNodes O
: (Not all nodes are

dmat ownin this photo)
M A

Avarage Error [mm]

o1
o

Figure 10: Positioning Accuracy

room. The no-line-of-sight signal affects desitance measure-
ment in the DOLPHIN system and causes serious position-
ing error. To mitigate effects of these error sources, we have
developped priority-based reference selection algorithm and
geometry-based no-line-of-sight signal rejection technique.
Although we do not describe the details of such techniques
in this paper (see [10]), it is important that practical solution
for this kind of problems can be found in implementation-
based approach.

Figure 10 shows experimental result of the DOLPHIN sys-
tem. We evaluated the positioning accuracy in a room envi-
ronment. we distributed 24 devices in a small room in our
laboratory, and utilized 4 references and 20 unlocated de-
vices to investigate how the number of references affects po-
sitioning accuracy. In this experiment, we applied all tech-
niques for achieving high accuracy positioning (i.e. tech-
niques for mitigation of error accumulation and no-line-of-
sight mulitipath error). The results showed that the DOL-
PHIN system could determine objects ’ position with an ac-
curacy of less than 20 cm in actual indoor environment. If
we do not apply techniques for achieving high accuracy posi-
tioning, error accumulation and no-line-of-sight propagation
seriously degrades positioning accuracy, and it results in the
accuracy of over 2 m.

5 Summary

This paper introduced how we have tackled to design prac-
tical sensor network system. We stated that development of
all flexible testbed, battery-less technology, and precise lo-
calization technique is quite important for practical sensor
network systems. As our answers to this challenge, we in-
troduced three systems, PAVENET, Solar Biscuit, and DOL-
PHIN, including design philosophy of each system.

Though implementation-based approach requires much
more effort and time than simulation-based approach, we be-
lieve that it is through implementation that practical sensor
network can be truly designed.

References

(1]

(2]

(3]

[4]

(51

(6]

[71

(8]

(9]

[10]

I E. Akyildiz, et al.,, “A Survey on Sensor Networks”,
IEEE Communications Magazine, 40(8), pp102-114,
2002.

Crossbow Wireless Sensor Networks,
http://www.xbow.com/.

M. Beigl, et al., “Smart-Its: An Embedded Platform
for Smart Objects”, Smart Objects Conference (sOc),
May 2003.

D. Estrin, et al., “Next Century Challenges: Scalable
Coordination in Sensor Networks,” Proc. of Mobi-
COM1999, Aug. 1999.

S. Saruwatari, et al., “Pavenet: A Hardware and
Software Framework For Wireless Sensor Networks,”
Proc. of INSS2004, June 2004.

T. Kashima, et al., “A Bind Control Model For Real-
space Programming in Ubiquitous Computing Envi-
ronment,” UBICOMP2004 poster, Sept. 2004.

A.Ward, et al., “ A New Location Technique for the
Active Office”, IEEE Personal Communications Mag-
azine, Vol. 4, No. 5, October 1997.

N.Priyantha, et al. “The Cricket Compass for Context-
aware Mobile Applications”, Proc. MOBICOM2001,
July 2001.

A. Savvides, et al., “Dynamic Fine Grained Local-
ization in Ad-Hoc Sensor Networks”, Proc. MOBI-
COM2001, July 2001.

M. Minami et al., “DOLPHIN: A Practical Approach
for Implementing a Fully Distributed Indoor Ultra-
sonic Positioning System”, Proc. UBICOMP2004,
Sept. 2004.

