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Abstract—The paper shows a compact hard real-time oper-
ating system for wireless sensor nodes called PAVENET OS.
PAVENET OS provides hybrid multithreading: preemptive mul-
tithreading and cooperative multithreading. Both of the multi-
threading is optimized for two kinds of task on wireless sensor
networks, and the kinds are real-time tasks and best-effort tasks.
PAVENET OS can efficiently perform hard real-time tasks that
cannot be performed by TinyOS. The paper demonstrates the
hybrid multithreading realizes compactness and low overhead,
which are comparable to those of TinyOS, through quantitative
evaluation. The results show PAVENET OS performs 100-Hz
sensor sampling with 0.01% jitter while performing wireless
communication tasks, whereas optimized TinyOS has 0.62%
jitter. In addition, PAVENET OS has a small footprint and low
overhead (minimum RAM size: 29 bytes, minimum ROM size:
490 bytes, minimum task switch time: 23 cycles).

I. INTRODUCTION

Wireless sensor networks (WSNs) have a number of poten-
tial fields of application, including habitat monitoring, mili-
tary applications [21], wildland fire monitoring [12], volcano
monitoring [24], and structural monitoring [16], [25], [15].
Each application has different requirements for communication
protocols and sensing tasks, and sensor nodes have very lim-
ited physical resources because of their design requirements,
namely, low power, low cost, and small size. In some cases,
sensor nodes must perform hardware-tightened tasks such
as radio management, which must be completed by highly
constrained deadline. Any operating system running on the
sensor nodes should cover these requirements.

TinyOS [14] is a standard operating system for wireless
sensor nodes. TinyOS takes up only 47 bytes of RAM and
473 bytes of ROM and switches tasks in several dozens
of cycles. This excellent compactness is provided by the
event architecture of TinyOS. In the event architecture, only
one main loop executes event handlers according to received
events, and the handlers never preempt each other.

However, the event architecture causes difficulties in per-
forming hard real-time tasks and high programming complex-
ity. In a real-time system, a higher priority task must preempt
other tasks, but the event architecture forbids preemption for
its compactness and small overhead.

In the present paper, we show a compact hard real-time op-
erating system called PAVENET OS. To realize the hard real-
time feature, PAVENET OS is designed with a thread model
and enabling preemption. The enabling preemption causes two
problems. First, the preemption induces huge overhead for

checking task priorities and saving CPU context. Second, the
preemption induces a conflict management problem among
tasks.

To reduce the preemption overhead, PAVENET OS uses a
characteristic of wireless sensor nodes: tasks can be catego-
rized as real-time tasks or best-effort tasks. PAVENET OS
provides two kinds of multithreading, which are preemptive
multithreading and cooperative multithreading. The preemp-
tive multithreading is optimized for the real-time tasks with
a CPU specific design, and the cooperative multithreading is
optimized for the best-effort tasks. To mitigate the conflict
management problem, PAVENET OS uses another character-
istic of wireless sensor nodes: most conflicts occur between
communication layers. PAVENET OS provides a wireless
communication stack for hiding the exclusive controls to users.

The hard real-time feature can perform 100-Hz sensor sam-
pling while performing radio management tasks with 0.01%
jitter, whereas optimized TinyOS has 0.62% jitter. Addition-
ally, PAVENETOS realizes compactness and low overhead that
are comparable to those of TinyOS. For example, PAVENET
OS can implement Blink, which is a sample program in
TinyOS [1], on 63 bytes of RAM and 1,183 bytes of ROM,
whereas TinyOS implements Blink on 44 bytes of RAM and
1,428 bytes of ROM. PAVENET OS also can switch tasks in
23 cycles minimally.

The present study is not intended to show that PAVENET
OS is the best operating system. In fact, in contrast to highly
portable TinyOS, PAVENET OS sacrifices portability because
PAVENET OS has a design specific to Microchip PIC18. Lack
of portability is a significant problem. However, the results of
the present study imply a better CPU design and operating
system design may exist for future wireless sensor networks.

The remainder of the present paper is organized as follows.
In the following section, we present the motivation for this
research and discuss the difference between the event model
and the thread model. In Section III, we provide the implemen-
tation details for the PAVENET OS in three parts: a hard real-
time task scheduler, a best-effort task scheduler, and a wireless
communication stack. Section IV presents an evaluation of
the performance of PAVENET OS. Section V reviews related
research, and conclusions are presented in Section VI.

II. REQUIREMENTS

Some applications in wireless sensor networks need to
obtain data of sufficient quality to have real scientific value,



and the applications include earthquake monitoring [22], vol-
cano monitoring [24], and structural health monitoring [16],
[25], [15]. The applications require high fidelity sampling.
For example, earthquake monitoring requires precise time-
synchronized 100-Hz sampling, and tasks are periodically
executed with strict deadlines [16], [22]. In addition, based
on the success of TinyOS which is an event driven operating
system, we know that compactness is an important factor when
covering wide-area applications for wireless sensor networks
because compactness is strongly related to power consumption
over the entire sensor network.

The advantages of using either the event model or the
thread model have been discussed thoroughly [17], [20], [23],
[14], [5]. It is difficult to strictly categorize all operating
systems as event models or thread models, and there are many
variations in programming style among models. To simplify
the discussion herein, we define an event model in the manner
of TinyOS [14], [9] and a thread model as traditional time-
sliced multithreading, such as the POSIX thread. The event
model has only one execution stream and forbids preemp-
tion among tasks: an event loop waits for events, an event
invokes a handler, and the event handler is executed in run-
to-completion. The thread model has multiple independent
execution streams, shared states, preemptive scheduling, and
synchronization schemes such as locks and conditions.

A. Event Model

In wireless sensor network research, a number of operating
systems have been implemented with the event model, includ-
ing TinyOS [14], SOS [11], Contiki [5], and protothreads [6].
The event architecture has two advantages. First, the user need
not be concerned with conflict management because all event
handlers execute in a run-to-completion manner and do not
preempt each other. This feature also reduces context switch
overhead because all task switches are realized by function
call. Second, event models can be implemented using limited
resources because of their simple structure, which consists
of a memory stack, an event loop, and event handlers. This
simplicity also allows portability of the system.

However, this simplicity causes two problems. First, the
event model cannot perform hard real-time tasks. To support
hard real-time tasks, the system must allow preemption. How-
ever, the event model does not allow preemption because the
advantages are strongly related to the absence of preemption.
For example, earthquake monitoring requires radio physical
layer tasks and exact 100-Hz sensor sampling [16], [22]. The
radio physical layer task has a 26-µs deadline and cycle,
and a 12.5-µs computation time. The precise 100-Hz sensor-
sampling task has a 10-ms cycle, a 2.2-µs computation time,
and a 3.2-µs deadline. While TinyOS is performing a radio
physical layer task, the sampling task cannot be executed until
the radio physical layer task is finished. In fact, Kim et al. [15]
struggled with temporal jitter caused by logging interferences
in sampling. They succeeded to reduce the jitter with Micro-
Timer and turning off all unnecessary components on TinyOS.
We note that the MicroTimer breaks the simplicity of the

event model because the MicroTimer is implemented inside an
interrupt handler. The implementation causes resource conflict
problems.

Second, the event model has high programming complexity
because the event model has to divide a sequence of tasks
into multiple event handlers. With the words of Dunkels et
al. [6]: “an event-driven model does not support a blocking
wait abstraction. Therefore, programmers of such systems
frequently need to use state machines to implement control
flow for high-level logic that cannot be expressed as a single
event handler.” The following code is Blink, which is a TinyOS
sample program that toggles an LED every one second [1].

[Blink.nc]

configuration Blink {
}implementation {

components Main, BlinkM, SingleTimer, LedsC;
Main.StdControl -> BlinkM.StdControl;
Main.StdControl -> SingleTimer.StdControl;
BlinkM.Timer -> SingleTimer.Timer;
BlinkM.Leds -> LedsC;

}

[BlinkM.nc]

module BlinkM {
provides {
interface StdControl;

}
uses {
interface Timer;
interface Leds;

}
}

implementation {
command result_t StdControl.init() {
call Leds.init();
return SUCCESS;

}
command result_t StdControl.start() {
return call Timer.start(TIMER_REPEAT, 1000);

}
command result_t StdControl.stop() {
return call Timer.stop();

}
event result_t Timer.fired() {
call Leds.redToggle();
return SUCCESS;

}
}

The user has to write this redundant code, even for a sim-
ple task such as making an LED blink. This redundancy
causes difficulty in understanding the code and debugging.
To reduce the programming complexity, Dunkels et al. [6]
proposed a programming abstraction for the event model called
protothreads. Protothreads makes it possible to write an event
model in a thread-like style. However, protothreads still does
not support hard real-time tasks.

B. Thread Model

The thread model can support hard real-time tasks because
it allows preemption. Allowing preemption is not a sufficient
condition, but a necessary condition, to support hard real-time
tasks. For example, MANTIS is a time-sliced multithreading
operating system for wireless sensor networks, but does not
support hard real-time tasks [4]. In the thread model, the user



TABLE I
EVENT MODEL VS. THREAD MODEL

event model thread model
compactness © ×
low overhead © ×

conflict management © ×
hard real-time support × ©

programming complexity × ©

can also understand the control flow easily because he/she
can code tasks as if they dominate a CPU. Consider the
implementation of Blink with the thread model. The program
is as follows:

void thread(void)
{

while(1){
toggle_led();
sleep(1);

}
}

Compare this code to the TinyOS source code in Section II-A.
The thread model can implement this program with a smaller
code size than the event model, even if the codes represent
the same task.

However, in contrast to the event model, the thread model
does not have a simple structure, and the user must consider
conflict management with shared data, and the task switch
overhead is high because the thread model operating system
has to save the CPU context at every preemption point.
In addition, a memory stack is required for each execution
stream. These features increase the memory consumption of
operating systems. For example, MANTIS occupies less than
500 bytes of RAM and approximately 14 KB of ROM [4]. This
is natural because the thread model provides an intermediate
layer between the hardware and the software, whereas the
event model is placed directly on the hardware.

We conclude the discussion about the event model and the
thread model to Table I. Both models have advantages and
disadvantages. The event model is compact, low overhead,
and need not manage resource confliction. However, the event
model cannot handle hard real-time tasks and has high pro-
gramming complexity. The thread model can support hard real-
time tasks, and has lower programming complexity. However,
the thread model is not compact, has high overhead, and need
manage resource confliction among tasks. The challenge is to
develop an operating system that has the following features:

• hard real-time support
• compactness
• low overhead
• low programming complexity

III. PAVENET OS
We design a compact hard real-time operating system called

PAVENET OS with enabling preemption. As mentioned in
Section II-B, the preemption induces preemption overhead and
a conflict management problem.

To reduce the preemption overhead, we use characteristics
of tasks in wireless sensor networks: tasks can be categorized

as real-time tasks or best-effort tasks. PAVENET OS provides
two kinds of multithreading: preemptive multithreading for
real-time tasks and cooperative multithreading for best-effort
tasks. Both of the multithreading is optimized for the tasks.
To mitigate the conflict management problem, PAVENET OS
also provides a wireless communication stack. The wireless
communication stack hides exclusive controls between layers
in wireless sensor networks.

A. Hard Real-time Task Scheduler

PAVENET OS provides a hard real-time task scheduler for
real-time tasks, and the real-time tasks have a task priority
and preempt lower priority tasks. The real-time tasks include
radio management, sensor sampling, and media access control.
Although the task priority and the preemption causes task
scheduling/switching overheads, PAVENET OS performs real-
time tasks in low overhead because PAVENET OS aggres-
sively uses functions of PIC18, namely, dynamic priority levels
and a fast return stack.

PIC18 is a microcontroller developed by Microchip and
has several interrupt sources, e.g., timers, external ports, a
Master Synchronous Serial Port (MSSP), and a Universal
Synchronous Receiver Transmitter (USART). Each source
is dynamically assigned to a high priority level or a low
priority level. High-priority interrupt events can interrupt any
low-priority tasks and best-effort tasks. Low-priority interrupt
events can interrupt any best-effort tasks. PIC18 also has a
fast return stack, which automatically saves the CPU context
when an interrupt occurs. In control registers, each interrupt
has three bits to control their operation: a flag bit, an enable bit,
and a priority bit. The flag bit indicates whether an interrupt
event has occurred. The enable bit allows the program to
execute an interrupt when the flag bit is set. The priority bit
selects high priority or low priority. For example, a timer0
interrupt has TMR0IF as a flag bit, TMR0IE as an enable bit,
and TMR0IP as a priority bit.

In PAVENET OS, each real-time task corresponds to each
interrupt vector. Therefore, there are no software transaction
in task switching and task scheduling. PAVENET OS decides
priority of real-time tasks according to their deadlines, and
multiple tasks can have same priority: the low priority tasks
must not have smaller deadline than high priority tasks. The
real-time task scheduling is categorized to deadline-monotonic
scheduling [18], [3]. Deadline-monotonic scheduling can as-
sign optimized priority to guarantee a deadline in a single CPU
[18].

We can test the sufficient condition of the schedulability
with deadline monotonic scheduling [18], [3]. The following
is a schedulability test presented in [3].

All tasks are characterized by

Ci ≤ Di ≤ Ti

where Ci is the computation time, Di is the deadline,
and Ti is the period of task τi. In addition, task τ1

represents the highest priority task and τn represents



the lowest priority task. Then, schedulability test is
given by:

∀i : 1 ≤ i ≤ n :
Ci

Di
+

Ii

Di
≤ 1 (1)

where Ii is a measure of higher priority tasks inter-
fering with the execution of τi:

Ii =
i−1∑
j=1

⌈
Di

Tj

⌉
Cj . (2)

If a task τi satisfies equation (1), the task τi is
schedulable.

In Equations (1) and (2), the scheduler has n priority levels
and each priority corresponds to a task. However, PAVENET
OS has only two priority levels and can assign multiple tasks
to a priority level. Therefore, the schedulability test for PAVE-
NET OS is as follows.

Suppose there are n high-priority tasks. The schedulability
test for high-priority tasks is given by:

Ci

Di
+

Ii

Di
≤ 1 (3)

where Ii is a measure of tasks having the same priority
interfering with the execution of τi:

Ii =


 n∑

j=1

⌈
Di

Tj

⌉
Cj


 −

⌈
Di

Ti

⌉
Ci

=


 n∑

j=1

⌈
Di

Tj

⌉
Cj


 − Ci.

Therefore, Equation (3) is:

Ci

Di
+

Ii

Di
=

Ci

Di
+

(∑n
j=1

⌈
Di

Tj

⌉
Cj

)
− Ci

Di

=
n∑

j=1

⌈
Di

Tj

⌉
Cj

Di
≤ 1. (4)

If a task τi satisfies equation (4), the task τi is schedulable.
Next, we show the schedulability test for low-priority tasks

τk. When there are n high-priority tasks and m low-priority
tasks, the schedulability test is given by:

Ck

Dk
+

Ik

Dk
≤ 1

where Ik is a measure of all tasks interfering with the
execution of τk:

Ik =

(
n+m∑
l=1

⌈
Dk

Tl

⌉
Cl

)
−

⌈
Dk

Tk

⌉
Ck

=

(
n+m∑
l=1

⌈
Dk

Tl

⌉
Cl

)
− Ck.

TABLE II
TASK CONTROL BLOCK. A TASK CONTROL BLOCK IN PAVENET OS USES

ONLY 40 BITS PER THREAD.

name size meaning
tid 8 bit thread ID

state 8 bit thread state
pc 16 bit program counter

sleep_time 8 bit time to wake

TABLE III
TASK CONTROL FUNCTIONS. PAVENET OS PROVIDES SEVEN SYSTEM

CALLS FOR TASK MANAGEMENT.

function name transaction setting state
add_task(funcname) add task to scheduler execute

os_yield() yield control execute
sleep(time) sleep time sec sleep
sig_wait() wait signal wait

suspend_task(pid) let pid to wait execute
signal_task(pid) let pid to execute execute
kill_task(pid) let pid to be dead execute

This gives a schedulability constraint of:

Ck

Dk
+

Ik

Dk
=

Ck

Dk
+

(∑n+m
l=1

⌈
Dk

Tl

⌉
Cl

)
− Ck

Dk

=
n+m∑
l=1

⌈
Dk

Tl

⌉
Cl

Dk
≤ 1. (5)

If a task τk satisfies equation (5), the task τk is schedulable.

B. Best-effort Task Scheduler

PAVENET OS performs hard real-time tasks with preemp-
tion, as described in Section 3.1, and other tasks are performed
with a best-effort task scheduler. The best-effort tasks include
hop-by-hop routing, delay writing to flash memory, and reply-
ing to sensor data query.

We develop the best-effort task scheduler with the thread
model and add three limitations for compactness and low
overhead to the threads. First, these threads only switch context
cooperatively. Cooperative task switching eliminates the need
for conflict management and only preserves a program counter
as CPU context. Second, these threads can only yield the top
level of a function. Although we can yield anywhere in the
function if the scheduler preserves the entire call stack, we
do not use this approach because it consumes a great deal of
memory and computation time. Third, these threads do not
use stack memory. Because of this limitation, CPUs need not
have a stack memory. Although PIC18 has a call stack, it does
not have a stack memory, and a heap memory is assigned to
variables at compilation time. Because of these limitations,
these threads forbid reentrance and duplication.

Table II represents a task control block on the best-effort
task scheduler. tid is the thread identifier, which the sched-
uler allocates to a thread when the thread is created. state
is the state of the thread. These threads have four states: dead,
execute, sleep, and wait. These states are transited with task
management functions as shown in Table III. pc is a program



counter at the current executing thread. sleep_time repre-
sents a time to wake. PAVENET OS ticks jiffies, and the
scheduler increments jiffies every 100 ms.

Table III lists the task management functions. Since PAVE-
NET OS has the limitations mentioned above, tasks can be
switched with very simple code:

void os_yield(void)
{

pcounters[current_task] = TOS;
asm("pop");

}

where TOS is the program counter.

C. Wireless Communication Stack

To reduce user fatigue caused by conflict management, we
use a characteristic of wireless sensor nodes: most conflicts
occur between communication layers. For example, when a
physical layer receives a packet, the physical layer accesses
a receive buffer in a media access control (MAC) layer, and
the MAC layer also accesses the receive buffer to run a MAC
protocol. PAVENET OS hides these exclusive controls in the
wireless communication stack, and the user need not consider
conflict management. The wireless communication stack also
realizes modularity at each communication layer, and the user
can easily develop various communication protocols according
to application demands.

To efficiently exchange data among layers, PAVENET OS
provides a buffer management mechanism called pbuf, which
is a lightweight version of BSD mbuf. Since the pbuf assigns a
small identifier to a buffer, each layer only needs to copy small
identifiers. Pbuf also provides APIs, which hides exclusive
controls for the buffer management in pbuf.

IV. EVALUATION

To evaluate PAVENET OS, we compare the precision of the
hard real-time task scheduler, the compactness, the execution
overhead, and the programming complexity to those of TinyOS
1.10 running on MICA2 [13]. PAVENET OS is implemented
with the HI-TECH PICC-18 compiler and run on PAVENET
modules.

Table IV lists the specifications of PAVENET modules
and MICA2, and PAVENET modules are shown in Figure
1. PAVENET modules and MICA2 have the same level of

TABLE IV
EVALUATED SENSOR NODES

PAVENET module MICA2
CPU PIC18LF4620 ATmega128L

frequency 20 MHz 7.4 MHz
instruction per second 5 MIPS 7.4 MIPS

wireless module CC1000 CC1000
wireless frequency 315 MHz 315 MHz

wireless modulation FSK FSK
power voltage DC3V DC3V

current (receiving) 30 mA 30 mA
current (sleep) 0.3µA 30µA

communication rate 38.4 kbps 19.2 kbps

Fig. 1. PAVENET modules

equipment. PAVENET modules have PIC18LF4620 as a CPU
and TI CC1000 as a radio module. The operating frequency of
the CPU is 20 MHz, but the number of instructions-per-second
is 5 MIPS because PIC18LF4620 performs an instruction
per four clock cycles. The wireless communication speed
of PAVENET modules is 38.4 kbps, but we changed it to
19.2 kbps in order to allow fair comparison with MICA2.
MICA2 has Atmel ATmega128 as a CPU and CC1000 as
a radio module. The operating frequency of the CPU is
7.4 MHz, and the number of instructions per second is 7.4
MIPS because ATmega128 performs one instruction per one
clock cycle. Although ATmega128 and PIC18LF4620 have
different architectures, they target the same application area.
We note that TinyOS can port to PAVENET modules, but
PAVENET OS cannot port to MICA2 because of its CPU-
specific architecture.

A. Hard Real-time Tasks

To evaluate hard real-time tasks, we assume tasks in
earthquake monitoring [16], [22] as an actual application
for wireless sensor networks. Earthquake monitoring requires
sampling at precisely 100 Hz with radio communication
because each sampling must be synchronized among sensor
nodes.

Table V shows evaluation results. ‘Sampling’ is the sensor
node performing only a 100-Hz sampling task, and ‘Sampling
+ RF’ is the sensor node performing a 100-Hz sampling task
while receiving packets from another node, which sends a
packet every 50 ms. All of the packet loss rates were 0%.
‘TinyOS (default)’ uses the Timer component [2] for sampling,
and ‘TinyOS (optimized)’ uses the MicroTimer. The optimized
TinyOS assumes a same setting with [15]. As mentioned in
Section II-A, the use of the MicroTimer breaks simplicity of
the event model. To sample at precisely 100 Hz, the sensor
node must generate precise 10 ms intervals. We measured
the intervals 2,000 times and obtained a maximum value, a
minimum value, and a jitter.

The results indicate that PAVENET OS realizes 100-Hz
sampling much more precisely than TinyOS, as shown in Table
V. The default TinyOS cannot perform precise 100-Hz sam-
pling, even if performing only the sampling task. The Timer
component on TinyOS adjusts the timer firing timing between



TABLE V
HARD REAL-TIME PERFORMANCE

PAVENET OS TinyOS (default) TinyOS (optimized)
max min jitter max min jitter max min jitter

Sampling 10.001 ms 10.000 ms 0.001 ms 9.764 ms 9.763 ms 0.001 ms 10.003 ms 10.000 ms 0.003 ms
Sampling + RF 10.001 ms 10.000 ms 0.001 ms 11.735 ms 7.794 ms 3.941 ms 10.062 ms 10.000 ms 0.062 ms

TABLE VI
KERNEL FOOTPRINT

module RAM (byte) ROM(byte)
task scheduler 29 490

wireless communication stack 628 930
total 657 1,420

TABLE VII
FOOTPRINT SIZE ON THE SAMPLE APPLICATIONS

PAVENET OS TinyOS
RAM ROM RAM ROM

Blink (byte) 63 1,183 44 1,428
BlinkTask (byte) 64 1,271 45 1,452
CntToLeds (byte) 64 1,209 46 1,570
CntToRfm (byte) 676 11,336 388 9,918

CntToLedsAndRfm (byte) 676 11,366 388 10,096

9-10 ms. Therefore, when the default TinyOS samples with
radio communication, the sampling error becomes significant
because the adjustment is tumbled by the radio communication
tasks. The optimized TinyOS can perform precise 100-Hz
sampling at 0.003 ms or 0.03% jitter, if performing only the
sampling task. The jitter becomes significant at 0.062 ms or
0.62%, when the optimized TinyOS performs the sampling
task with radio communication. On the other hand, PAVENET
OS can always sample at precisely 100 Hz, even with radio
communication, and the jitter is much smaller at 0.001 ms or
0.01%.

B. Compactness

We show that PAVENET OS has compactness comparable
to that of TinyOS. To evaluate the compactness, we measure
the RAM sizes and ROM sizes of PAVENET OS and TinyOS.

First, we measure the footprint of the scheduler and the
wireless communication stack, as shown in Table VI. The
task scheduler occupies 29 bytes of RAM and 490 bytes of
ROM when there are no connected libraries and the maximum
number of tasks is five. As extra 5 bytes of RAM per task
is required when the user needs to increase the maximum
number of tasks. Typically, the thread model has a smaller
number of tasks than the event model, because the user uses
one task for a sequence of tasks in the thread model. According
to [14], TinyOS requires 47 bytes of RAM and 473 bytes
of ROM when there are no connected modules. Therefore,
the PAVENET OS scheduler footprint is as small as that of
TinyOS. The wireless communication stack consumes 628
bytes of RAM and 930 bytes of ROM. The consumed RAM

size is not small because the wireless communication layer has
many buffers for receiving and sending in the physical layer,
pbuf, and queues in the layers, which consume a great deal of
memory.

Next, we measure the size of the footprint for sample
applications. We implemented the applications provided by
TinyOS, namely, Blink, BlinkTask, CntToLeds, CntToRfm, and
CntToLedsAndRfm [1]. Blink and BlinkTask toggle an LED
on the sensor node every second. The difference between
Blink and BlinkTask is how the task is implemented. Blink
implements timer handling and LED toggling in a single
task. BlinkTask implements timer handling and LED toggling
in two different tasks, and the timer handling task signals
the LED toggling task. CntToLeds increments a counter and
sends the counter value to the LEDs on the sensor node.
CntToRfm increments a counter and sends the counter value
via radio. CntToLedsAndRfm is the combination of CntToLeds
and CntToRfm. CntToLedsAndRfm increments a counter, sends
the counter value to LEDs on the sensor node, and sends the
counter value to other sensor nodes via radio.

Table VII compares the RAM size and the ROM size for ap-
plications on PAVENET OS and TinyOS. The results indicate
that PAVENET OS has comparable compactness to TinyOS.
PAVENET OS uses more RAM and less ROM than TinyOS
when the applications do not have radio communication, and
the applications are Blink, BlinkTask, and CntToLeds. The
reason for this is as follows. TinyOS divides one sequence
of tasks to many small run-to-completion tasks. The division
allows tasks to reuse the RAM area, but occupies more ROM
area. On the other hand, PAVENET OS uses one task for a
sequence of tasks, and this unification consumes RAM because
tasks cannot reuse RAM. However, the unification saves ROM.
When the applications have radio communication such as
CntToRfm or CntToLedsAndRfm, PAVENET OS requires more
RAM and more ROM than TinyOS because PAVENET OS has
the wireless communication stack, as shown in Table VI.

C. Overhead

Figure 2 shows the task switch overhead for various tasks,
and the tasks are the net task and the user task as best effort
tasks, the mac task as a low-priority real-time task, and the
phy task as a high-priority real-time task. The low-priority task
can preempt best effort tasks in 66 cycles. The high-priority
task can preempt best effort tasks or low-priority tasks in 23
cycles. When a best effort task yields the CPU, the best effort
task switches to another best effort task in 92 cycles. Task
switch overheads are relatively low. For example, MANTIS
switches tasks in approximately 400 cycles [4], and TinyOS
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Fig. 2. Task switch overhead

TABLE VIII
AVERAGE EXECUTION CYCLES ON SAMPLE APPLICATIONS NOT

INCLUDING RADIO COMMUNICATION

PAVENET OS TinyOS
Blink (cycle) 8.5 19.5

BlinkTask (cycle) 134.5 123.5
CntToLeds (cycle) 147.0 155.5

switches tasks in 51 cycles [14].
PAVENET OS has low overhead, on the same level as

TinyOS, when implementing the same sample applications
provided by TinyOS. These applications are described in
Section IV-B. First, we measured the average execution cycle
from the timer being fired until the end of the sequence of
tasks on Blink, BlinkTask, and CntToLeds, as shown in Table
VIII. The average cycle was calculated from 100 execution
cycles. We use “cycle” as the unit because PAVENET modules
and MICA2 have different clock frequencies. In Blink and
CntToLeds, PAVENET OS is slightly faster than TinyOS
because TinyOS has small overhead at joints between modules.
In BlinkTask, PAVENET OS is slightly slower than TinyOS
and the result corresponds to the task switch overhead.

Second, we measured the average execution time from
the timer being fired until the end of packet transmission
on CntToRfm and CntToLedsAndRfm, as shown in Table IX.
We use time, rather than cycles, as the unit because the
execution time is strongly related to the packet length and
communication overhead. Although PAVENET OS has the
wireless communication stack and PAVENET modules run
slower MIPS than TinyOS, the results are almost the same.
The results represent the wireless communication stack on
PAVENET OS has relatively low overhead.

V. RELATED RESEARCH

There are a number of operating systems for wireless sensor
nodes, including TinyOS [14], [9], SOS [11], Contiki [5],
Nano-RK [8], MANTIS [4], protothreads [6], and t-kernel
[10]. Most of these operating systems are designed with the
event model. As mentioned in Section II, the event model
cannot support hard real-time tasks, and has high programming
complexity.

TinyOS [14] is the de facto standard operating system
for wireless sensor nodes. TinyOS was designed with the

TABLE IX
AVERAGE EXECUTION TIMES ON SAMPLE APPLICATIONS INCLUDING

RADIO COMMUNICATION

PAVENET OS TinyOS
CntToRfm (ms) 17.0 17.1

CntToLedsAndRfm (ms) 16.9 17.2

event model, and so does not support hard real-time tasks
and has high programming complexity. TinyOS attempts to
reduce the programming complexity through a new event-
driven specific language called nesC [9], which enhances
reusability of components. However, this solution means that
the user has to learn a new language.

SOS [11] is another event model operating system. SOS
has a loadable programming module feature, whereas TinyOS
has a statically linked system image. The loadable module
is lightweight and can be written in C. In SOS, the user
can update modules after the sensor nodes are deployed.
However, SOS cannot support hard real-time tasks and has
high programming complexity.

Contiki [5] is an event model operating system. To reduce
the programming complexity, as an option, Contiki can support
time-sliced preemptive multithreading by assigning a memory
stack to each thread. The memory assignment consumes
computational resources. In addition, the threads destroy the
simplicity of event models, e.g., the user must manage resource
confliction. Moreover, Contiki cannot support hard real-time
tasks even if the user uses the threads.

Protothreads [6] have an implementation similar to that of
the cooperative task scheduler of PAVENET OS. Protothreads
is an extension of the event model designed to reduce the
programming complexity. The event model must divide a
task into multiple run-to-completion functions. Protothreads
provide a conditional blocking wait statement to the event
model. The user can then write a program in a thread-like
style. When using the conditional blocking wait, the user
inserts PT_BEGIN and PT_END at the top and the bottom
respectively, of the event handler. Protothreads reduce the
programming complexity of the event model, but does not
solve all of the problems in the event model. In particular,
protothreads cannot support hard real-time tasks.

The Nano-RK[8] is the most closely related work to
PAVENET OS. Nano-RK is a preemptive multitask operating
system supporting real-time tasks. Additionally, Nano-RK is
more portable than PAVENET OS. However, Nano-RK has
more context switch overhead than PAVENET OS because
Nano-RK has to preserve CPU context by software. Nano-
RK needs several dozens of µs for task switching whereas
PAVENET OS needs several µs.

Like PAVENET OS, MANTIS [4] is a thread model operat-
ing system. The difference between MANTIS and PAVENET
OS is the implementation of the thread model. MANTIS
uses time-sliced multithreading, whereas the threading of
PAVENET OS is not time-sliced. To realize time-sliced mul-
tithreading, MANTIS assigns a stack memory for each task.



Therefore, MANTIS consumes more RAM than PAVENET
OS. Furthermore, MANTIS does not support hard real-time
tasks.

T-kernel [10] is also a thread model operating system, and
provides virtual memory and preemptive scheduling. Since
the preemptive scheduling has 16 priority levels, the t-kernel
might be able to support hard real-time tasks. However, [10]
does not evaluate its schedulability, hard real-time perfor-
mance, and overhead. In addition, t-kernel does not provide
any mechanism to hide exclusive controls like the wireless
communication stack on PAVENET OS.

VI. CONCLUSION

The present paper has described PAVENET OS, a compact
hard real-time operating system for wireless sensor nodes.
PAVENET OS can be implemented on the same amount
of computational resources as TinyOS, and, unlike TinyOS,
PAVENET OS supports hard real-time tasks and has low
programming complexity. In addition, since a wireless com-
munication stack is provided, the user need not consider the
exclusive controls caused by hard real-time tasks. The results
of the present study imply that hardware support by CPU
can extend the functions of an operating system without a
loss of compactness. For future wireless sensor nodes, it may
be necessary to reconsider the balance between hardware and
software.

We are currently working on the integration of a CPU
design and an operating system design for ultra low-power
wireless sensor networks[19]. Ekanayake et al. have already
succeeded to implement an ultra low-power processor using
software/hardware co-design based on the event model [7].
We believe that designing a CPU based on the thread model,
such as a many-core design, also dramatically reduces energy
consumption and covers a wider range of applications for
future wireless sensor networks.
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